2024屆吉林省白城市白城市第十四中學(xué)數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第1頁
2024屆吉林省白城市白城市第十四中學(xué)數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第2頁
2024屆吉林省白城市白城市第十四中學(xué)數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第3頁
2024屆吉林省白城市白城市第十四中學(xué)數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第4頁
2024屆吉林省白城市白城市第十四中學(xué)數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆吉林省白城市白城市第十四中學(xué)數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知的展開式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,則奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為().A. B. C. D.2.水平放置的,用斜二測畫法作出的直觀圖是如圖所示的,其中,則繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積為()A. B. C. D.3.已知向量,,當(dāng)時,()A. B. C. D.4.已知函數(shù),若曲線在點(diǎn)處的切線方程為,則實(shí)數(shù)的取值為()A.-2 B.-1 C.1 D.25.定義域?yàn)镽的偶函數(shù)滿足任意,有,且當(dāng)時,.若函數(shù)至少有三個零點(diǎn),則的取值范圍是()A. B. C. D.6.單位正方體ABCD-,黑、白兩螞蟻從點(diǎn)A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設(shè)白、黑螞蟻都走完2020段后各自停止在正方體的某個頂點(diǎn)處,這時黑、白兩螞蟻的距離是()A.1 B. C. D.07.已知函數(shù),,則的極大值點(diǎn)為()A. B. C. D.8.一個盒子里有4個分別標(biāo)有號碼為1,2,3,4的小球,每次取出一個,記下它的標(biāo)號后再放回盒子中,共取3次,則取得小球標(biāo)號最大值是4的取法有()A.17種 B.27種 C.37種 D.47種9.的展開式中有理項(xiàng)有()A.項(xiàng) B.項(xiàng) C.項(xiàng) D.項(xiàng)10.已知,,那么是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.如圖是一個算法流程圖,則輸出的結(jié)果是()A. B. C. D.12.設(shè)i為虛數(shù)單位,若復(fù)數(shù),則復(fù)數(shù)z等于()A. B. C. D.0二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在△ABC中,E為邊AC上一點(diǎn),且,P為BE上一點(diǎn),且滿足,則的最小值為______.14.如圖,兩個同心圓的半徑分別為和,為大圓的一條直徑,過點(diǎn)作小圓的切線交大圓于另一點(diǎn),切點(diǎn)為,點(diǎn)為劣弧上的任一點(diǎn)(不包括兩點(diǎn)),則的最大值是__________.15.已知半徑為的圓周上有一定點(diǎn),在圓周上等可能地任意取一點(diǎn)與點(diǎn)連接,則所得弦長介于與之間的概率為__________.16.已知不等式組所表示的平面區(qū)域?yàn)?,則區(qū)域的外接圓的面積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某景點(diǎn)上山共有級臺階,寓意長長久久.甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,若甲每步上一個臺階的概率為,每步上兩個臺階的概率為.為了簡便描述問題,我們約定,甲從級臺階開始向上走,一步走一個臺階記分,一步走兩個臺階記分,記甲登上第個臺階的概率為,其中,且.(1)若甲走步時所得分?jǐn)?shù)為,求的分布列和數(shù)學(xué)期望;(2)證明:數(shù)列是等比數(shù)列;(3)求甲在登山過程中,恰好登上第級臺階的概率.18.(12分)某貧困地區(qū)幾個丘陵的外圍有兩條相互垂直的直線型公路,以及鐵路線上的一條應(yīng)開鑿的直線穿山隧道,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,以所在的直線分別為軸,軸,建立平面直角坐標(biāo)系,如圖所示,山區(qū)邊界曲線為,設(shè)公路與曲線相切于點(diǎn),的橫坐標(biāo)為.(1)當(dāng)為何值時,公路的長度最短?求出最短長度;(2)當(dāng)公路的長度最短時,設(shè)公路交軸,軸分別為,兩點(diǎn),并測得四邊形中,,,千米,千米,求應(yīng)開鑿的隧道的長度.19.(12分)已知函數(shù).(1)若對任意x0,f(x)0恒成立,求實(shí)數(shù)a的取值范圍;(2)若函數(shù)f(x)有兩個不同的零點(diǎn)x1,x2(x1x2),證明:.20.(12分)等比數(shù)列中,.(Ⅰ)求的通項(xiàng)公式;(Ⅱ)記為的前項(xiàng)和.若,求.21.(12分)某公司欲投資一新型產(chǎn)品的批量生產(chǎn),預(yù)計該產(chǎn)品的每日生產(chǎn)總成本價格)(單位:萬元)是每日產(chǎn)量(單位:噸)的函數(shù):.(1)求當(dāng)日產(chǎn)量為噸時的邊際成本(即生產(chǎn)過程中一段時間的總成本對該段時間產(chǎn)量的導(dǎo)數(shù));(2)記每日生產(chǎn)平均成本求證:;(3)若財團(tuán)每日注入資金可按數(shù)列(單位:億元)遞減,連續(xù)注入天,求證:這天的總投入資金大于億元.22.(10分)已知數(shù)列,,數(shù)列滿足,n.(1)若,,求數(shù)列的前2n項(xiàng)和;(2)若數(shù)列為等差數(shù)列,且對任意n,恒成立.①當(dāng)數(shù)列為等差數(shù)列時,求證:數(shù)列,的公差相等;②數(shù)列能否為等比數(shù)列?若能,請寫出所有滿足條件的數(shù)列;若不能,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】因?yàn)榈恼归_式中第4項(xiàng)與第8項(xiàng)的二項(xiàng)式系數(shù)相等,所以,解得,所以二項(xiàng)式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為.考點(diǎn):二項(xiàng)式系數(shù),二項(xiàng)式系數(shù)和.2、B【解題分析】

根據(jù)斜二測畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,圓錐的側(cè)面展開圖是扇形根據(jù)扇形面積公式即可求得組合體的表面積.【題目詳解】根據(jù)“斜二測畫法”可得,,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,它的表面積為.故選:【題目點(diǎn)撥】本題考查斜二測畫法的應(yīng)用及組合體的表面積求法,難度較易.3、A【解題分析】

根據(jù)向量的坐標(biāo)運(yùn)算,求出,,即可求解.【題目詳解】,.故選:A.【題目點(diǎn)撥】本題考查向量的坐標(biāo)運(yùn)算、誘導(dǎo)公式、二倍角公式、同角間的三角函數(shù)關(guān)系,屬于中檔題.4、B【解題分析】

求出函數(shù)的導(dǎo)數(shù),利用切線方程通過f′(0),求解即可;【題目詳解】f(x)的定義域?yàn)椋ī?,+∞),因?yàn)閒′(x)a,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【題目點(diǎn)撥】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計算能力.5、B【解題分析】

由題意可得的周期為,當(dāng)時,,令,則的圖像和的圖像至少有個交點(diǎn),畫出圖像,數(shù)形結(jié)合,根據(jù),求得的取值范圍.【題目詳解】是定義域?yàn)镽的偶函數(shù),滿足任意,,令,又,為周期為的偶函數(shù),當(dāng)時,,當(dāng),當(dāng),作出圖像,如下圖所示:函數(shù)至少有三個零點(diǎn),則的圖像和的圖像至少有個交點(diǎn),,若,的圖像和的圖像只有1個交點(diǎn),不合題意,所以,的圖像和的圖像至少有個交點(diǎn),則有,即,.故選:B.【題目點(diǎn)撥】本題考查函數(shù)周期性及其應(yīng)用,解題過程中用到了數(shù)形結(jié)合方法,這也是高考常考的熱點(diǎn)問題,屬于中檔題.6、B【解題分析】

根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過幾段后又回到起點(diǎn),得到每爬1步回到起點(diǎn),周期為1.計算黑螞蟻爬完2020段后實(shí)質(zhì)是到達(dá)哪個點(diǎn)以及計算白螞蟻爬完2020段后實(shí)質(zhì)是到達(dá)哪個點(diǎn),即可計算出它們的距離.【題目詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過1段后又回到起點(diǎn),可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點(diǎn);同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點(diǎn),所以它們此時的距離為.故選B.【題目點(diǎn)撥】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,考查空間想象與推理能力,屬于中等題.7、A【解題分析】

求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)數(shù)為零,根據(jù)函數(shù)單調(diào)性,求得極大值點(diǎn)即可.【題目詳解】因?yàn)?,故可得,令,因?yàn)?,故可得或,則在區(qū)間單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,故的極大值點(diǎn)為.故選:A.【題目點(diǎn)撥】本題考查利用導(dǎo)數(shù)求函數(shù)的極值點(diǎn),屬基礎(chǔ)題.8、C【解題分析】

由于是放回抽取,故每次的情況有4種,共有64種;先找到最大值不是4的情況,即三次取出標(biāo)號均不為4的球的情況,進(jìn)而求解.【題目詳解】所有可能的情況有種,其中最大值不是4的情況有種,所以取得小球標(biāo)號最大值是4的取法有種,故選:C【題目點(diǎn)撥】本題考查古典概型,考查補(bǔ)集思想的應(yīng)用,屬于基礎(chǔ)題.9、B【解題分析】

由二項(xiàng)展開式定理求出通項(xiàng),求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【題目詳解】,,當(dāng),,,時,為有理項(xiàng),共項(xiàng).故選:B.【題目點(diǎn)撥】本題考查二項(xiàng)展開式項(xiàng)的特征,熟練掌握二項(xiàng)展開式的通項(xiàng)公式是解題的關(guān)鍵,屬于基礎(chǔ)題.10、B【解題分析】

由,可得,解出即可判斷出結(jié)論.【題目詳解】解:因?yàn)椋遥?,解得.是的必要不充分條件.故選:.【題目點(diǎn)撥】本題考查了向量數(shù)量積運(yùn)算性質(zhì)、三角函數(shù)求值、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.11、A【解題分析】

執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案.【題目詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計算結(jié)果,故選A.【題目點(diǎn)撥】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的結(jié)果的計算與輸出,其中解答中執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán)是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.12、B【解題分析】

根據(jù)復(fù)數(shù)除法的運(yùn)算法則,即可求解.【題目詳解】.故選:B.【題目點(diǎn)撥】本題考查復(fù)數(shù)的代數(shù)運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】試題分析:根據(jù)題意有,因?yàn)槿c(diǎn)共線,所以有,從而有,所以的最小值是.考點(diǎn):向量的運(yùn)算,基本不等式.【方法點(diǎn)睛】該題考查的是有關(guān)應(yīng)用基本不等式求最值的問題,屬于中檔題目,在解題的過程中,關(guān)鍵步驟在于對題中條件的轉(zhuǎn)化,根據(jù)三點(diǎn)共線,結(jié)合向量的性質(zhì)可知,從而等價于已知兩個正數(shù)的整式形式和為定值,求分式形式和的最值的問題,兩式乘積,最后應(yīng)用基本不等式求得結(jié)果,最后再加,得出最后的答案.14、【解題分析】

以為坐標(biāo)原點(diǎn),所在的直線為軸,的垂直平分線為軸,建立平面直角坐標(biāo)系,從而可得、,,,然后利用向量數(shù)量積的坐標(biāo)運(yùn)算可得,再根據(jù)輔助角公式以及三角函數(shù)的性質(zhì)即可求解.【題目詳解】以為坐標(biāo)原點(diǎn),所在的直線為軸,的垂直平分線為軸,建立平面直角坐標(biāo)系,則、,由,且,所以,所以,即又平分,所以,則,設(shè),則,,所以,所以,,所以的最大值是.故答案為:【題目點(diǎn)撥】本題考查了向量數(shù)量積的坐標(biāo)運(yùn)算、利用向量解決幾何問題,同時考查了輔助角公式以及三角函數(shù)的性質(zhì),屬于中檔題.15、【解題分析】在圓上其他位置任取一點(diǎn)B,設(shè)圓半徑為R,其中滿足條件AB弦長介于與之間的弧長為?2πR,則AB弦的長度大于等于半徑長度的概率P==;故答案為:.16、【解題分析】

先作可行域,根據(jù)解三角形得外接圓半徑,最后根據(jù)圓面積公式得結(jié)果.【題目詳解】由題意作出區(qū)域,如圖中陰影部分所示,易知,故,又,設(shè)的外接圓的半徑為,則由正弦定理得,即,故所求外接圓的面積為.【題目點(diǎn)撥】線性規(guī)劃問題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開放區(qū)域、分界線是實(shí)線還是虛線,其次確定目標(biāo)函數(shù)的幾何意義,是求直線的截距、兩點(diǎn)間距離的平方、直線的斜率、還是點(diǎn)到直線的距離、可行域面積、可行域外接圓等等,最后結(jié)合圖形確定目標(biāo)函數(shù)最值取法、值域范圍.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、見解析【解題分析】

(1)由題可得的所有可能取值為,,,,且,,,,所以的分布列為所以的數(shù)學(xué)期望.(2)由題可得,所以,又,,所以,所以是以為首項(xiàng),為公比的等比數(shù)列.(3)由(2)可得.18、(1)當(dāng)時,公路的長度最短為千米;(2)(千米).【解題分析】

(1)設(shè)切點(diǎn)的坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義求出切線的方程為,根據(jù)兩點(diǎn)間距離得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,從而得出極值和最值,即可得出結(jié)果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根據(jù)勾股定理即可求出的長度.【題目詳解】(1)由題可知,設(shè)點(diǎn)的坐標(biāo)為,又,則直線的方程為,由此得直線與坐標(biāo)軸交點(diǎn)為:,則,故,設(shè),則.令,解得=10.當(dāng)時,是減函數(shù);當(dāng)時,是增函數(shù).所以當(dāng)時,函數(shù)有極小值,也是最小值,所以,此時.故當(dāng)時,公路的長度最短,最短長度為千米.(2)在中,,,所以,所以,根據(jù)正弦定理,,,,又,所以.在中,,,由勾股定理可得,即,解得,(千米).【題目點(diǎn)撥】本題考查利用導(dǎo)數(shù)解決實(shí)際的最值問題,涉及構(gòu)造函數(shù)法以及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和極值,還考查正余弦定理的實(shí)際應(yīng)用,還考查解題分析能力和計算能力.19、(1);(2)證明見解析.【解題分析】

(1)求出,判斷函數(shù)的單調(diào)性,求出函數(shù)的最大值,即求的范圍;(2)由(1)可知,.對分和兩種情況討論,構(gòu)造函數(shù),利用放縮法和基本不等式證明結(jié)論.【題目詳解】(1)由,得.令.當(dāng)時,;當(dāng)時,;在上單調(diào)遞增,在上單調(diào)遞減,.對任意恒成立,.(2)證明:由(1)可知,在上單調(diào)遞增,在上單調(diào)遞減,.若,則,令在上單調(diào)遞增,,.又,在上單調(diào)遞減,.若,則顯然成立.綜上,.又以上兩式左右兩端分別相加,得,即,所以.【題目點(diǎn)撥】本題考查利用導(dǎo)數(shù)解決不等式恒成立問題,利用導(dǎo)數(shù)證明不等式,屬于難題.20、(Ⅰ)或(Ⅱ)12【解題分析】

(1)先設(shè)數(shù)列的公比為,根據(jù)題中條件求出公比,即可得出通項(xiàng)公式;(2)根據(jù)(1)的結(jié)果,由等比數(shù)列的求和公式,即可求出結(jié)果.【題目詳解】(1)設(shè)數(shù)列的公比為,,,或.(2)時,,解得;時,,無正整數(shù)解;綜上所述.【題目點(diǎn)撥】本題主要考查等比數(shù)列,熟記等比數(shù)列的通項(xiàng)公式與求和公式即可,屬于基礎(chǔ)題型.21、(1);(2)證明見解析;(3)證明見解析.【解題分析】

(1)求得函數(shù)的導(dǎo)函數(shù),由此求得求當(dāng)日產(chǎn)量為噸時的邊際成本.(2)將所要證明不等式轉(zhuǎn)化為證明,構(gòu)造函數(shù),利用導(dǎo)數(shù)證得,由此證得不等式成立.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論