湖南省瀏陽(yáng)一中、醴陵一中2022-2023學(xué)年高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第1頁(yè)
湖南省瀏陽(yáng)一中、醴陵一中2022-2023學(xué)年高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第2頁(yè)
湖南省瀏陽(yáng)一中、醴陵一中2022-2023學(xué)年高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第3頁(yè)
湖南省瀏陽(yáng)一中、醴陵一中2022-2023學(xué)年高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第4頁(yè)
湖南省瀏陽(yáng)一中、醴陵一中2022-2023學(xué)年高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè),且,則()A. B. C. D.2.若向量,,則在方向上的投影為()A.-2 B.2 C. D.3.已知兩點(diǎn),若點(diǎn)是圓上的動(dòng)點(diǎn),則面積的最大值為()A.13 B.3 C. D.4.角α的終邊上有一點(diǎn)P(a,|a|),a∈R且a≠0,則sinα值為()A. B. C.1 D.或5.下列函數(shù)的最小值為的是()A. B.C. D.6.己知的周長(zhǎng)為,內(nèi)切圓的半徑為,,則的值為()A. B. C. D.7.我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中記載的“芻甍”(chumeng)是底面為矩形,頂部只有一條棱的五面體.如圖,五面體是一個(gè)芻甍.四邊形為矩形,與都是等邊三角形,,,則此“芻甍”的表面積為()A. B. C. D.8.已知,,,則,,的大小關(guān)系為()A. B. C. D.9.以下有四個(gè)說(shuō)法:①若、為互斥事件,則;②在中,,則;③和的最大公約數(shù)是;④周長(zhǎng)為的扇形,其面積的最大值為;其中說(shuō)法正確的個(gè)數(shù)是()A. B.C. D.10.如圖,矩形ABCD中,AB=2,AD=1,P是對(duì)角線AC上一點(diǎn),,過(guò)點(diǎn)P的直線分別交DA的延長(zhǎng)線,AB,DC于點(diǎn)M,E,N.若(m>0,n>0),則2m+3n的最小值是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.?dāng)?shù)列的前項(xiàng)和為,若數(shù)列的各項(xiàng)按如下規(guī)律排列:,,,,,,,,,,…,,,…,,…有如下運(yùn)算和結(jié)論:①;②數(shù)列,,,,…是等比數(shù)列;③數(shù)列,,,,…的前項(xiàng)和為;④若存在正整數(shù),使,,則.其中正確的結(jié)論是_____.(將你認(rèn)為正確的結(jié)論序號(hào)都填上)12.設(shè)為實(shí)數(shù),為不超過(guò)實(shí)數(shù)的最大整數(shù),如,.記,則的取值范圍為,現(xiàn)定義無(wú)窮數(shù)列如下:,當(dāng)時(shí),;當(dāng)時(shí),,若,則________.13.已知l,m是平面外的兩條不同直線.給出下列三個(gè)論斷:①l⊥m;②m∥;③l⊥.以其中的兩個(gè)論斷作為條件,余下的一個(gè)論斷作為結(jié)論,寫(xiě)出一個(gè)正確的命題:__________.14._______________.15.若點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)在函數(shù)的圖像上,則稱(chēng)點(diǎn)、直線及函數(shù)組成系統(tǒng),已知函數(shù)的反函數(shù)圖像過(guò)點(diǎn),且第一象限內(nèi)的點(diǎn)、直線及函數(shù)組成系統(tǒng),則代數(shù)式的最小值為_(kāi)_______.16.已知函數(shù),若函數(shù)恰有個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為_(kāi)_________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知定義域?yàn)榈暮瘮?shù)是奇函數(shù)(Ⅰ)求值;(Ⅱ)判斷并證明該函數(shù)在定義域上的單調(diào)性;(Ⅲ)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;(Ⅳ)設(shè)關(guān)于的函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍.18.已知數(shù)列中,,.(1)求數(shù)列的通項(xiàng)公式:(2)設(shè),求數(shù)列的通項(xiàng)公式及其前項(xiàng)和.19.已知四棱錐的底面為直角梯形,,,底面,且,是的中點(diǎn).(1)求證:直線平面;(2)若,求二面角的正弦值.20.如圖,平行四邊形中,,分別是,的中點(diǎn),為與的交點(diǎn),若,,試以,為基底表示、、.21.知兩條直線l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,求當(dāng)m為何值時(shí),l1與l2:(1)垂直;(2)平行,并求出兩平行線間的距離.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

利用兩角和差正切公式可求得;根據(jù)范圍可求得;利用兩角和差公式計(jì)算出;利用兩角和差余弦公式計(jì)算出結(jié)果.【詳解】,又本題正確選項(xiàng):【點(diǎn)睛】本題考查利用三角恒等變換中的兩角和差的正余弦和正切公式求解三角函數(shù)值的問(wèn)題,涉及到同角三角函數(shù)關(guān)系的應(yīng)用;關(guān)鍵是能夠熟練應(yīng)用兩角和差公式進(jìn)行配湊,求得所需的三角函數(shù)值.2、A【解析】向量,,所以,||=5,所以在方向上的投影為=-2故選A3、C【解析】

先求出直線方程,然后計(jì)算出圓心到直線的距離,根據(jù)面積的最大時(shí),以及高最大的條件,可得結(jié)果.【詳解】由,利用直線的截距式所以直線方程為:即由圓,即所以圓心為,半徑為則圓心到直線的距離為要使面積的最大,則圓上的點(diǎn)到最大距離為所以面積的最大值為故選:C【點(diǎn)睛】本題考查圓與直線的幾何關(guān)系以及點(diǎn)到直線的距離,屬基礎(chǔ)題.4、B【解析】

根據(jù)三角函數(shù)的定義,求出OP,即可求出的值.【詳解】因?yàn)?,所以,故選B.【點(diǎn)睛】本題主要考查三角函數(shù)的定義應(yīng)用.5、C【解析】分析:利用基本不等式的性質(zhì)即可判斷出正誤,注意“一正二定三相等”的使用法則.詳解:A.時(shí)顯然不滿足條件;B.其最小值大于1.D.令因此不正確.故選C.點(diǎn)睛:本題考查基本不等式,考查通過(guò)給變量取特殊值,舉反例來(lái)說(shuō)明某個(gè)命題不正確,是一種簡(jiǎn)單有效的方法.6、C【解析】

根據(jù)的周長(zhǎng)為,內(nèi)切圓的半徑為,求得,再利用正弦定理,得到,然后代入余弦定理,化簡(jiǎn)得到求解.【詳解】因?yàn)榈闹荛L(zhǎng)為,內(nèi)切圓的半徑為,所以,又因?yàn)?,所?由余弦定理得:,,所以,所以,即,因?yàn)锳為內(nèi)角,所以,所以.故選:C【點(diǎn)睛】本題主要考查了正弦定理和余弦定理的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.7、A【解析】

分別計(jì)算出每個(gè)面積,相加得到答案.【詳解】故答案選A【點(diǎn)睛】本題考查了圖像的表面積,意在考查學(xué)生的計(jì)算能力.8、D【解析】

利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性直接求解.【詳解】解:因?yàn)?,,所以,,的大小關(guān)系為.故選:D.【點(diǎn)睛】本題考查三個(gè)數(shù)的大小比較,考查指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),屬于基礎(chǔ)題.9、C【解析】

設(shè)、為對(duì)立事件可得出命題①的正誤;利用大邊對(duì)大角定理和余弦函數(shù)在上的單調(diào)性可判斷出命題②的正誤;列出和各自的約數(shù),可找出兩個(gè)數(shù)的最大公約數(shù),從而可判斷出命題③的正誤;設(shè)扇形的半徑為,再利用基本不等式可得出扇形面積的最大值,從而判斷出命題④的正誤.【詳解】對(duì)于命題①,若、為對(duì)立事件,則、互斥,則,命題①錯(cuò)誤;對(duì)于命題②,由大邊對(duì)大角定理知,,且,函數(shù)在上單調(diào)遞減,所以,,命題②正確;對(duì)于命題③,的約數(shù)有、、、、、,的約數(shù)有、、、、、、、,則和的最大公約數(shù)是,命題③正確;對(duì)于命題④,設(shè)扇形的半徑為,則扇形的弧長(zhǎng)為,扇形的面積為,由基本不等式得,當(dāng)且僅當(dāng),即當(dāng)時(shí),等號(hào)成立,所以,扇形面積的最大值為,命題④錯(cuò)誤.故選C.【點(diǎn)睛】本題考查命題真假的判斷,涉及互斥事件的概率、三角形邊角關(guān)系、公約數(shù)以及扇形面積的最值,判斷時(shí)要結(jié)合這些知識(shí)點(diǎn)的基本概念來(lái)理解,考查推理能力,屬于中等題.10、C【解析】設(shè),則又當(dāng)且僅當(dāng)時(shí)取等號(hào),故選點(diǎn)睛:在利用基本不等式求最值的時(shí)候,要特別注意“拆,拼,湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù)),“定”(不等式的另一邊必須為定值),“等”(等號(hào)取得的條件)的條件才能應(yīng)用,否則會(huì)出現(xiàn)錯(cuò)誤.二、填空題:本大題共6小題,每小題5分,共30分。11、①③④【解析】

根據(jù)題中所給的條件,將數(shù)列的項(xiàng)逐個(gè)寫(xiě)出,可以求得,將數(shù)列的各項(xiàng)求出,可以發(fā)現(xiàn)其為等差數(shù)列,故不是等比數(shù)列,利用求和公式求得結(jié)果,結(jié)合條件,去挖掘條件,最后得到正確的結(jié)果.【詳解】對(duì)于①,前24項(xiàng)構(gòu)成的數(shù)列是,所以,故①正確;對(duì)于②,數(shù)列是,可知其為等差數(shù)列,不是等比數(shù)列,故②不正確;對(duì)于③,由上邊結(jié)論可知是以為首項(xiàng),以為公比的等比數(shù)列,所以有,故③正確;對(duì)于④,由③知,即,解得,且,故④正確;故答案是①③④.【點(diǎn)睛】該題考查的是有關(guān)數(shù)列的性質(zhì)以及對(duì)應(yīng)量的運(yùn)算,解題的思想是觀察數(shù)列的通項(xiàng)公式,理解項(xiàng)與和的關(guān)系,認(rèn)真分析,仔細(xì)求解,從而求得結(jié)果.12、【解析】

根據(jù)已知條件,計(jì)算數(shù)列的前幾項(xiàng),觀察得出無(wú)窮數(shù)列呈周期性變化,即可求出的值?!驹斀狻慨?dāng)時(shí),,,,,……,無(wú)窮數(shù)列周期性變化,周期為2,所以?!军c(diǎn)睛】本題主要考查學(xué)生的數(shù)學(xué)抽象能力,通過(guò)取整函數(shù)得到數(shù)列,觀察數(shù)列的特征,求數(shù)列中的某項(xiàng)值。13、如果l⊥α,m∥α,則l⊥m或如果l⊥α,l⊥m,則m∥α.【解析】

將所給論斷,分別作為條件、結(jié)論加以分析.【詳解】將所給論斷,分別作為條件、結(jié)論,得到如下三個(gè)命題:(1)如果l⊥α,m∥α,則l⊥m.正確;(2)如果l⊥α,l⊥m,則m∥α.正確;(3)如果l⊥m,m∥α,則l⊥α.不正確,有可能l與α斜交、l∥α.【點(diǎn)睛】本題主要考查空間線面的位置關(guān)系、命題、邏輯推理能力及空間想象能力.14、2【解析】

利用裂項(xiàng)求和法將化簡(jiǎn)為,再求極限即可.【詳解】令...故答案為:【點(diǎn)睛】本題主要考查數(shù)列求和中的列項(xiàng)求和,同時(shí)考查了極限的求法,屬于中檔題.15、【解析】

根據(jù)函數(shù)的反函數(shù)圖像過(guò)點(diǎn)可求出,由、直線及函數(shù)組成系統(tǒng)可知在的圖象上,且,代入化簡(jiǎn)為,換元?jiǎng)t,利用單調(diào)性求解.【詳解】因?yàn)楹瘮?shù)的反函數(shù)圖像過(guò)點(diǎn),所以,即,由、直線及函數(shù)組成系統(tǒng)知在上,所以,代入化簡(jiǎn)得,令由知,故則在上單調(diào)遞減,所以當(dāng)即時(shí),,故填.【點(diǎn)睛】本題主要考查了對(duì)稱(chēng)問(wèn)題,反函數(shù)概念,根據(jù)條件求最值,函數(shù)的單調(diào)性,換元法,綜合性大,難度大,屬于難題.16、【解析】

首先根據(jù)題意轉(zhuǎn)化為函數(shù)與有個(gè)交點(diǎn),再畫(huà)出與的圖象,根據(jù)圖象即可得到的取值范圍.【詳解】有題知:函數(shù)恰有個(gè)零點(diǎn),等價(jià)于函數(shù)與有個(gè)交點(diǎn).當(dāng)函數(shù)與相切時(shí),即:,,,解得或(舍去).所以根據(jù)圖象可知:.故答案為:【點(diǎn)睛】本題主要考查函數(shù)的零點(diǎn)問(wèn)題,同時(shí)考查了學(xué)生的轉(zhuǎn)化能力,體現(xiàn)了數(shù)形結(jié)合的思想,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ)答案見(jiàn)解析;(Ⅲ)(Ⅳ).【解析】試題分析:(1)根據(jù)奇函數(shù)性質(zhì)得,解得值;(2)根據(jù)單調(diào)性定義,作差通分,根據(jù)指數(shù)函數(shù)單調(diào)性確定因子符號(hào),最后根據(jù)差的符號(hào)確定單調(diào)性(3)根據(jù)奇偶性以及單調(diào)性將不等式化為一元二次不等式恒成立問(wèn)題,利用判別式求實(shí)數(shù)的取值范圍;(4)根據(jù)奇偶性以及單調(diào)性將方程轉(zhuǎn)化為一元二次方程有解問(wèn)題,根據(jù)二次函數(shù)圖像與性質(zhì)求值域,即得實(shí)數(shù)的取值范圍.試題解析:(Ⅰ)由題設(shè),需,∴,∴,經(jīng)驗(yàn)證,為奇函數(shù),∴.(Ⅱ)減函數(shù)證明:任取,,且,則,∵∴∴,;∴,即∴該函數(shù)在定義域上是減函數(shù).(Ⅲ)由得,∵是奇函數(shù),∴,由(Ⅱ)知,是減函數(shù)∴原問(wèn)題轉(zhuǎn)化為,即對(duì)任意恒成立,∴,得即為所求.(Ⅳ)原函數(shù)零點(diǎn)的問(wèn)題等價(jià)于方程由(Ⅱ)知,,即方程有解∵,∴當(dāng)時(shí)函數(shù)存在零點(diǎn).點(diǎn)睛:利用函數(shù)性質(zhì)解不等式:首先根據(jù)函數(shù)的性質(zhì)把不等式轉(zhuǎn)化為的形式,然后根據(jù)函數(shù)的單調(diào)性去掉“”,轉(zhuǎn)化為具體的不等式(組),此時(shí)要注意與的取值應(yīng)在外層函數(shù)的定義域內(nèi).18、(1)(2),【解析】

(1)利用累加法得到答案.(2)計(jì)算,利用裂項(xiàng)求和得到前項(xiàng)和.【詳解】(1)由題意可知左右累加得.(2).【點(diǎn)睛】本題考查了數(shù)列的累加法,裂項(xiàng)求和法,是數(shù)列的常考題型.19、(1)證明見(jiàn)解析;(2).【解析】

(1)取中點(diǎn),連結(jié),,推導(dǎo)出,,從而平面平面,由此能證明直線平面;(2)以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值.【詳解】(1)證明:取中點(diǎn),連結(jié),,,是的中點(diǎn),,,,,平面平面,平面,直線平面.(2)解:,,底面,,是的中點(diǎn),,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,則,0,,,1,,,0,,,2,,,1,,,1,,,1,,,1,,,0,,設(shè)平面的法向量,,,則,取,得.設(shè)平面的法向量,,,則,取,得.設(shè)二面角的平面角為,則.二面角的余弦值為.【點(diǎn)睛】本題主要考查線面平行的證明,考查二面角的余弦值的求法,考查運(yùn)算求解能力,屬于中檔題.20、【解析】分析:直接利用共線向量的性質(zhì)、向量加法與減法的三角形法則求解即可.詳解:由題意,如圖,,連接,則是的重心,連接交于點(diǎn),則是的中點(diǎn),∴點(diǎn)在上,∴,故答案為;;∴.點(diǎn)睛:向量的運(yùn)算有兩種方法,一是幾何運(yùn)算往往結(jié)合平面幾何知識(shí)和三角函數(shù)知識(shí)解答,運(yùn)算法則是:(1)平行四邊形法則(平行四邊形的對(duì)角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和);二是坐標(biāo)運(yùn)算:建立坐標(biāo)系轉(zhuǎn)化為解析幾何問(wèn)題解答(求最值與范圍問(wèn)題,往往利用坐標(biāo)運(yùn)算比較簡(jiǎn)單).21、(1)m(2)m=﹣7,距離為【解析】

(1)由題

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論