因式分解教案3篇_第1頁(yè)
因式分解教案3篇_第2頁(yè)
因式分解教案3篇_第3頁(yè)
因式分解教案3篇_第4頁(yè)
因式分解教案3篇_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

因式分解教案3篇學(xué)習(xí)目標(biāo)

1、學(xué)會(huì)用公式法因式法分解

2、綜合運(yùn)用提取公式法、公式法分解因式

學(xué)習(xí)重難點(diǎn)重點(diǎn):

完全平方公式分解因式.

難點(diǎn):綜合運(yùn)用兩種公式法因式分解

自學(xué)過(guò)程設(shè)計(jì)

完全平方公式:

完全平方公式的逆運(yùn)用:

做一做:

1.(1)16x2-8x+_______=(4x-1)2;

(2)_______+6x+9=(x+3)2;

(3)16x2+_______+9y2=(4x+3y)2;

(4)(a-b)2-2(a-b)+1=(______-1)2.

2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號(hào))

3.以下因式分解正確的選項(xiàng)是()

A.x2+y2=(x+y)2B.x2-xy+x2=(x-y)2

C.1+4x-4x2=(1-2x)2D.4-4x+x2=(x-2)2

4.分解因式:(1)x2-22x+121(2)-y2-14y-49(3)(a+b)2+2(a+b)+1

5.計(jì)算:20232-40102023+20232=___________________.

6.若x+y=1,則x2+xy+y2的值是_________________.

想一想

你還有哪些地方不是很懂?請(qǐng)寫(xiě)出來(lái)。

____________________________________________________________________________________預(yù)習(xí)展現(xiàn)一:

1.判別以下各式是不是完全平方式.

2、把以下各式因式分解:

(1)-x2+4xy-4y2

(2)3ax2+6axy+3ay2

(3)(2x+y)2-6(2x+y)+9

應(yīng)用探究:

1、用簡(jiǎn)便方法計(jì)算

49.92+9.98+0.12

拓展提高:

(1)(a2+b2)(a2+b210)+25=0求a2+b2

(2)4x2+y2-4xy-12x+6y+9=0

求x、y關(guān)系

(3)分解因式:m4+4

教后反思考察利用公式法因式分解的題目不會(huì)很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)展變形,從而到達(dá)進(jìn)展因式分解的目的,但是這里有用到實(shí)際中去的例子,對(duì)學(xué)生來(lái)說(shuō)會(huì)難一些。

因式分解教案篇2

一、教材分析

1、教材的地位與作用

“整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運(yùn)算到各種整式的乘法,整章教材都突出了學(xué)生的自主探究過(guò)程,依據(jù)原有的學(xué)問(wèn)根底,或運(yùn)用乘法的各種運(yùn)算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運(yùn)算的根本法則、兩個(gè)主要的乘法公式及因式分解的根本方法學(xué)生自己對(duì)學(xué)問(wèn)內(nèi)容的探究、熟悉與體驗(yàn),完全有利于學(xué)生形成合理的學(xué)問(wèn)構(gòu)造,提高數(shù)學(xué)思維力量.利用公式法進(jìn)展因式分解時(shí),留意把握多項(xiàng)式的特點(diǎn),比照乘法公式乘積結(jié)果的形式,選擇正確的分解方法。

因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項(xiàng)式乘法公式的逆向變形,它是將一個(gè)多項(xiàng)式變形為多項(xiàng)式與多項(xiàng)式的乘積。

2、教學(xué)目標(biāo)

(1)會(huì)推導(dǎo)乘法公式

(2)在應(yīng)用乘法公式進(jìn)展計(jì)算的根底上,感受乘法公式的作用和價(jià)值。

(3)會(huì)用提公因式法、公式法進(jìn)展因式分解。

(4)了解因式分解的一般步驟。

(5)在因式分解中,經(jīng)受觀看、探究和做出推斷的過(guò)程,提高分析問(wèn)題和解決問(wèn)題的力量。

3、重點(diǎn)、難點(diǎn)和關(guān)鍵

重點(diǎn):乘法公式的意義、分式的由來(lái)和正確運(yùn)用;用提公因式法和公式法進(jìn)展因式分解。

難點(diǎn):正確運(yùn)用乘法公式;正確分解因式。

關(guān)鍵:正確理解乘法公式和因式分解的意義。

二、本單元教學(xué)的方法和策略:

1.注意學(xué)問(wèn)形成的探究過(guò)程,讓學(xué)生在探究過(guò)程中領(lǐng)悟?qū)W問(wèn),在領(lǐng)悟過(guò)程中建構(gòu)體系,從而更好地實(shí)現(xiàn)學(xué)問(wèn)體系的更新和學(xué)問(wèn)的正向遷移.

2.學(xué)問(wèn)內(nèi)容的呈現(xiàn)方式力求與學(xué)生已有的學(xué)問(wèn)構(gòu)造相聯(lián)系,同時(shí)兼顧學(xué)生的思維水平和心理特征.

3.讓學(xué)生把握根本的數(shù)學(xué)事實(shí)與數(shù)學(xué)活動(dòng)閱歷,減輕不必要的記憶負(fù)擔(dān).

4.留意從生活中選取素材,給學(xué)生供應(yīng)一些溝通、爭(zhēng)論的空間,讓學(xué)生從中體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,逐步養(yǎng)成談數(shù)學(xué)、想數(shù)學(xué)、做數(shù)學(xué)的良好習(xí)慣.

三、課時(shí)安排:

2.1平方差公式1課時(shí)

2.2完全平方公式2課時(shí)

2.3用提公因式法進(jìn)展因式分解1課時(shí)

2.4用公式法進(jìn)展因式分解2課時(shí)

因式分解教案篇3

【教學(xué)目標(biāo)】

1、了解因式分解的概念和意義;

2、熟悉因式分解與整式乘法的`相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

【教學(xué)重點(diǎn)、難點(diǎn)】

重點(diǎn)是因式分解的概念,難點(diǎn)是理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

【教學(xué)過(guò)程】

㈠、情境導(dǎo)入

看誰(shuí)算得快:(搶答)

(1)若a=101,b=99,則a2-b2=___________;

(2)若a=99,b=-1,則a2-2ab+b2=____________;

(3)若x=-3,則20x2+60x=____________。

㈡、探究新知

1、請(qǐng)每題答得最快的同學(xué)談思路,得出最正確解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

(2)a2-2ab+b2=(a-b)2=(99+1)2=10000;

(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

2、觀看:a2-b2=(a+b)(a-b),a2-2ab+b2=(a-b)2,20x2+60x=20x(x+3),找出它們的特點(diǎn)。(等式的左邊是一個(gè)什么式子,右邊又是什么形式?)

3、類比小學(xué)學(xué)過(guò)的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,教師補(bǔ)充。)

板書(shū)課題:§6.1因式分解

因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。

㈢、前進(jìn)一步

1、讓學(xué)生連續(xù)觀看:(a+b)(a-b)=a2-b2,(a-b)2=a2-2ab+b2,20x(x+3)=20x2+60x,它們是什么運(yùn)算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)分?

2、因式分解與整式乘法的關(guān)系:

因式分解

結(jié)合:a2-b2(a+b)(a-b)

整式乘法

說(shuō)明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。

結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。

㈣、穩(wěn)固新知

1、以下代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?

(1)x2-3x+1=x(x-3)+1;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

(3)2m(m-n)=2m2-2mn;(4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

(6)x2-4+3x=(x-2)(x+2)+3x;(7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

2、你能寫(xiě)出整式相乘(其中至少一個(gè)是多項(xiàng)式)的兩個(gè)例子,并由此得到相應(yīng)的兩個(gè)多項(xiàng)式的因式分解嗎?把結(jié)果與你的同伴溝通。

㈤、應(yīng)用解釋

例檢驗(yàn)以下因式分解是否正確:

(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

分析:檢驗(yàn)因式分解是否正確,只要看等式右邊幾個(gè)整式相乘的積與右邊的多項(xiàng)式是否相等。

練習(xí)計(jì)算以下各題,并說(shuō)明你的算法:(請(qǐng)學(xué)生板演)

(1)872+87×13

(2)1012-992

㈥、思

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論