版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
‘1Chapter
3Further
development
and
analysis
of
theclassical
linear
regression
model西北大學(xué)《金融計(jì)量學(xué)》Multiple
Linear
Regression‘Before,
we
have
used
the
modelyt
a
bxt
utt=
1,2,...,T
But what
if
our
dependent
(y)
variable depends
on
more than
oneindependent
variable?For
example
the
number
of
cars
sold
might
plausibly
depend
onthe
price
of
carsthe
price
of
public
transportthe
price
of
gasthe
extent
of
the
public’s
concern
about
global
warmingMultiple
Linear
Regression‘Similarly,
stock
returns
might
depend
on
several
factors.
Having
just
one
independent
variable
is
no
good
in
this
case
-
we
want
tohave
more
than
one
x
variable.
It
is
very
easy
to
generalise
the
simplemodel
to
one
with
k-1
regressors
(independent
variables).Multiple
Regression
and
the
Constant
Term?yt
b1b
2
x2t
b3
x3t...b,ktx=1kt,2,..u.t,T1b1
is
the
coefficient
attached
to
the
constant
term.1
Where
is
x1?
It
is
the
constant
term.
In
fact
the
constant
term
is
usuallyrepresented
by
a
column
of
ones
of
length
T:11xb
2
measures
the
effect
of
x
2
on
y
afterNow
we
write
eliminating
the
effects
of
x3
,
x
4,
xk‘Different
Ways
of
Expressing
the
Multiple
Linear
Regression
ModelWe
could
write
out
a
separate
equation
for
every
value
of
t:2
x212
x22b
3
x31b
3
x32......b
k
xk1b
k
xk
2u1u2b
k
xkTuTy1b1by2b1byTb1b2
x2Tb
3
x3T...Different
Ways
of
Expressing
the
Multiple
Linear
Regression
Model‘wherey
is
T
1X
is
T
kb
is
k
1u
is
T
1We
can
write
this
in
matrix
formy
=
Xb
+uInside
the
Matrices
of
theMultiple
Linear
Regression
Model‘e.g.
if
k
is
2,
we
have
2
regressors,
one
of
which
is
a
column
of
ones:T
1T
1yTu1u2222y1yx21x11b1b
2x2T
uT1T
2
2
1How
Do
We
Calculate
the
Parameters
(the
b
Vector)in
this
Case?‘u?2u?Previously,
we
took
the
residual
sum
of
squares,
and
minimised
itw.r.t.
a
and
b.In
the
matrix
notation,
we
haveu?12222u?t1u?
2
u?
.T..u??TuTu2?u?TThe
RSS
would
be
given
byu?1L
u
"u?
?u
u1
?
2
?u?The
OLS
Estimator
fortheMultiple
Regression
Model‘"?
?L
u
u
(
y
xb?)"
(
yxb?)(y"
b?"
x"
)(
y
xb?)y"
xb?
b?"
x"
xb?b?"
x"
xb?L0b?(x"
x)1
x"
yb?y"
y
b?"
x"
yy"
y
b1
2?b?"
x"
yb?2b?kerrors,
s
2,
we
usedT
2s
2u?t
.Standard
Errors
of
the
Coefficient
Estimates
for
theMultiple
Regression
Modela
bxtIn
bivariate
regression
y2
t
ut
,
to
estimate
the
varianceIn
multiple
linear
regression,
wse2use
u"
uT
kIntercept
+
one
coefficient‘#
of
regressors+interceptIt
can
be
proved
that
the
OLS
estimator
of
the
variance
of
bdiagonal
elements
of
s2(
X
"
X
)‘1
,
so
that
the
variance
of
bis
given
by
t1is
the
firstelement,
the
variance
of
b
2
is
the
second
element,
and
…,
and
the
variancof
b
k
is
the
kth
diagonal
element.Standard
Errors
of
the
Coefficient
Estimates
for
theMultiple
Regression
ModelCalculating
Parameter
and
Standard
Error
Estimatesfor
Multiple
Regression
Models:
An
ExampleExample:
The
following
model
with
k=3
is
estimated
over
15
observations:y
b
1
b
2
x2
b
3
x3
uCalculate
the
coefficient
estimates
and
their
standard
errors.s20.91RSS
10.96T
k
15
3(
X
"
X
)and
the
following
data
have
been
calculated
from
the
original
X’s.3.02.0
31..50
6.5
,(
X
"
y1).0
2.2 ,
u
"
u
10.961
16.3.0.55
4.3
0.6-1.0
6.5
4.3
0.6To
calculate
the
standard
errors,
we
n1e9.e8d8an
estimate
of
s
2.1.1b1??2bb?3("x
x)12.0
3.5
-1.0
3"x
y
3.5
1.0
6.5b?
2.24.4Calculating
Parameter
and
Standard
Error
Estimatesfor
Multiple
Regression
Models:
An
Example
(cont’d)‘bis
given
The
variance-covariance
matrix
ofbySE
(b11SE
(b22Var(bVar(bVar(b)
1.83)
0.91)
3.93SE
(b)
1.35)
0.96)
1.9833We
write:19.88
x3ty?
1.101.354.40
x2
t0.961.981.830.91
5.94The
variances
are
on
the
leading
diagonal:Var(b?)1s2
(
X
"
X
)
0.91(
X
"
X
)10.913.20
0.915.39.4203.93Testing
Multiple
Hypotheses:
The
F-test‘
T-test
to
test
single
hypotheses,
i.e.
hypotheses
involving
only
onecoefficient.F-test
is
for
multiple
hypothesesTesting
Multiple
Hypotheses:
The
F-test‘F-test
involves
estimating
2
regressions:The
unrestricted
regression
is
the
one
in
which
the
coefficients
are
freeldetermined
by
the
data,
as
we
have
done
before.The
restricted
regression
is
the
one
in
which
the
coefficients
are
restrici.e.
the
restrictions
are
imposed
on
some
bs.The
F-test:Restricted
and
Unrestricted
Regressions‘ExampleThe
general
regression
isyt
=
b1
+
b2x2t
+
b3x3t
+
b4x4t
+
ut(1)
(unrestricted
regression)some
theory
predicts
that:
b3
+b4
=
1s.t.
b3
+b4
=
1yt
=
b1
+
b2x2t
+
b3x3t
+
b4x4t
+
ut(restricted
regression)The
F-test:Restricted
and
Unrestricted
Regressions‘
We
substitute
the
restriction
(b3
+b4
=
1)
into
the
regression
so
that
it
isautomatically
imposed
on
the
data.b3
+b4
=
1
b4
=
1-
b3
(substitute
into
equation
(1))The
F-test:
Forming
the
Restricted
Regressionyt
=
b1
+
b2x2t
+
b3x3t
+
(1-b3)x4t
+
ut
yt=
b1
+
b2x2t
+
b3x3t
+
x4t
-
b3x4t
+
utGather
terms
in
b’s
together
and
rearrange(yt
-
x4
t
)=
b1
+
b2x2t
+
b3(x3t
-
x4t)
+
ut
This
is
the
restricted
regression.
We
actually
estimate
it
by
creating
two
nvariables,
call
them,
say,
Pt
and
Qt.Pt
=
yt
-
x4tQt
=
x3t
-
x4tsoPt
=
b1
+
b2x2t
+
b3
Qt
+
ut
is
the
restricted
regression
we
actually
estimate.‘Calculating
the
F-Test
Statistic‘The
test
statistic
is
given
byF
test
statisticRRSS
URSS
T
k
URSS
mwhere
URSS
=
RSS
from
unrestricted
regressionRRSS
=
RSS
from
restricted
regressionm
=
number
of
restrictionsT
=
number
of
observationsk
=
number
of
regressors
in
unrestricted
regressionincluding
a
constant
in
the
unrestricted
regression
(or
the
total
number
ofparameters
to
be
estimated).Understanding
the
F-testF
test
statistic
follows
a
F
distribution.Recall
that
OLS
regression
is
to
minimize
URSS.
If
RRSS
is
NOT
much
higher
than
URSS
the
restriction
issupported
by
the
data
If
RRSS
is
much
higher
than
URSS the
restriction
is
notsupported
by
the
data‘Understanding
the
F-test‘Usually
RRSS>URSS,
so
F-test
statistic
>0F-test
has
two
different
d.f.
(recall
that
T-Test
only
has
one
d.f.=T-K)?is
rejected
if
the
F
test
statistic>the
critical
F-valueH0F-distribution
Table‘Determining
the
Number
of
Restrictions
in
an
F-test‘Examples
:H0:
hypothesisb1
+
b2
=
2b2
=
1
and
b3
=
-1b2
=
0,
b3
=
0
and
b4
=
0No.
of
restrictions,
m123If
the
model
is
yt
=
b1
+
b2x2t
+
b3x3t
+
b4x4t
+
ut,andH0:
b2
=
0,
and
b3
=
0
and
b4
=
0
is
tested
by
the
regression
F-statistic.
Ittests
the
null
hypothesis
that
all
of
the
coefficients
except
the
interceptcoefficient
are
zero.
Note
the
form
of
the
alternative
hypothesis
for
all
tests
when
more
than
onerestriction
is
involved:
H1:
b2
0,
or
b3
0
or
b4
0What
we
Cannot
Test
with
Either
an
F
or
a
t-test‘
We
cannot
test
using
this
framework
hypotheses
which
are
not
linearor
which
are
multiplicative,
e.g.H0:
b2
b3
=
2
or
H0:
b2
2
=
1cannot
be
tested.F-test
Example‘Question:Suppose
a
researcher
wants
to
test
whether
the
returns
on
a
company
stock
(y)show
unit
sensitivity
to
two
factors
(factor
x2
and
factor
x3)
among
threeconsidered.
The
regression
is
carried
out
on
144
monthly
observations.
Theregression
is
yt
=
b1
+
b2x2t
+
b3x3t
+
b4x4t+
utWhat
are
the
restricted
and
unrestricted
regressions?If
the
two
RSS
are
436.1
and
397.2
respectively,
perform
the
test.Goodness
of
Fit:
R2
Goodness
of
fit
measures
how
well
the
model
fits
the
data,
or,
how
well
dothe
X
explain
the
variation
in
Y?Can
RSS
measures
the
goodness
of
fit?
No.
Because
RSS
is
unbounded
from
above
and
it
can
take
any
(non-negative
value
The
value
of
RSS
depends
to
a
great
extent
on
the
scale
of
Y.
e.g.
Y/10
hasless
RSS
than
Y.So
we
need
a
scaled
version
of
RSS:
R2If
this
is
high,
it
meansThe
model
fits
the
data
wellR2
is
the
square
of
the
correlation
coefficient
between
Y
and
y[-1,1][0,1]Goodness
of
Fit:R2‘
For
another
explanation,
recall
that
what
we
are
interested
in
doing
isexplaining
the
variability
of
y
about
its
mean
value,
,
i.e.
the
total
sum
ofsquares,
TSS:ttTSS
y2yGoodness
of
Fit:R2‘
We
can
split
the
TSS
into
two
parts,ESS(explained
sum
of
squares)
andRSS(the
part
which
we
did
not
explain
using
the
model
)Defining
R2That
is,
TSS=
ESS
+
RSSOur
goodness
of
fit
statistic
isR21RSSESS
TSS
RSS
TSS
TSSTSS
R2
must
always
lie
between
zero
and
one.
To
understand
this,
consider
twoextremesRSS
=
TSSi.e.ESS
=
0soR2
=
ESS/TSS
=
0ESS
=
TSSi.e.RSS
=
0soR2
=
ESS/TSS
=
1t
t‘ttttu?2y
y2y?
y2The
Limit
Cases:
R2
=
0
and
R2
=
1ytWhen
R2
=
0
,
the
model
hasno
any
ability
to
explain
the
variationof
Y,
this
would
happen
only
theestimated
coefficients
are
all
zero.yxt‘The
Limit
Cases:
R2
=
0
and
R2
=
1When
R2
=
1
,
the
model
hasexplained
all
of
the
variation
ytof
Y
about
its
mean
value,this
would
happen
only
in
the
casewhen
all
of
the
observations
lie
exactlyon
the
fitted
line.xt‘Problems
with
R2
as
a
Goodness
of
Fit
MeasureThere
are
a
number
of
them:1.R2
is
defined
as
the
variation
about
the
mean
of
y
(
y
)
,
so
if
a
model
isrearranged
and
the
dependent
variable
changes,
R2
will
change.
(ev
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026福建龍巖市公安局永定分局招聘招聘警務(wù)輔助人員34人考試參考試題及答案解析
- 2026云南保山電力股份有限公司校園招聘50人考試參考試題及答案解析
- 2026北京中關(guān)村第三小學(xué)永新分校招聘考試備考試題及答案解析
- 2026青海智特安全環(huán)境技術(shù)服務(wù)有限公司招聘技術(shù)員6人考試備考題庫(kù)及答案解析
- 人工關(guān)節(jié):骨科植入領(lǐng)域的技術(shù)革命與臨床實(shí)踐
- 2026云南昭通市水富市文化館城鎮(zhèn)公益性崗位人員招聘1人考試參考題庫(kù)及答案解析
- 2026年西安高新區(qū)第三初級(jí)中學(xué)校園招聘考試備考題庫(kù)及答案解析
- 2026年德宏職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試備考試題帶答案解析
- 2026年順德區(qū)陳村鎮(zhèn)青云小學(xué)招聘數(shù)學(xué)臨聘教師備考題庫(kù)及一套答案詳解
- 2026年重慶雙福農(nóng)產(chǎn)品批發(fā)市場(chǎng)有限公司招聘?jìng)淇碱}庫(kù)及完整答案詳解1套
- 山東省濟(jì)南市2024年1月高二上學(xué)期學(xué)情期末檢測(cè)英語(yǔ)試題含解析
- 供應(yīng)鏈管理工作計(jì)劃與目標(biāo)
- 口腔門(mén)診醫(yī)療質(zhì)控培訓(xùn)
- (正式版)JBT 9229-2024 剪叉式升降工作平臺(tái)
- HGT4134-2022 工業(yè)聚乙二醇PEG
- GB/T 15231-2023玻璃纖維增強(qiáng)水泥性能試驗(yàn)方法
- 小學(xué)教職工代表大會(huì)提案表
- ESC2023年心臟起搏器和心臟再同步治療指南解讀
- 《泰坦尼克號(hào)》拉片分析
- GB/T 2624.1-2006用安裝在圓形截面管道中的差壓裝置測(cè)量滿管流體流量第1部分:一般原理和要求
- 基層版胸痛中心建設(shè)標(biāo)準(zhǔn)課件
評(píng)論
0/150
提交評(píng)論