人教版高中數(shù)學(xué)選擇性必修第三冊(cè)8.2 一元線性回歸模型及其應(yīng)用 B組 能力提高訓(xùn)練含解析_第1頁(yè)
人教版高中數(shù)學(xué)選擇性必修第三冊(cè)8.2 一元線性回歸模型及其應(yīng)用 B組 能力提高訓(xùn)練含解析_第2頁(yè)
人教版高中數(shù)學(xué)選擇性必修第三冊(cè)8.2 一元線性回歸模型及其應(yīng)用 B組 能力提高訓(xùn)練含解析_第3頁(yè)
人教版高中數(shù)學(xué)選擇性必修第三冊(cè)8.2 一元線性回歸模型及其應(yīng)用 B組 能力提高訓(xùn)練含解析_第4頁(yè)
人教版高中數(shù)學(xué)選擇性必修第三冊(cè)8.2 一元線性回歸模型及其應(yīng)用 B組 能力提高訓(xùn)練含解析_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第第頁(yè)人教版高中數(shù)學(xué)選擇性必修第三冊(cè)8.2一元線性回歸模型及其應(yīng)用B組能力提高訓(xùn)練(含解析)成套的課件成套的教案成套的試題盡在高中數(shù)學(xué)同步資源大全群483122854

人教版高中數(shù)學(xué)選擇性必修第三冊(cè)

8.2一元線性回歸模型及其應(yīng)用B組能力提高訓(xùn)練(原卷版)

一、選擇題

1.(2023·全國(guó)高二課時(shí)練)某種碘是一種放射性物質(zhì),該碘最初一段時(shí)間衰減的時(shí)間(單位:分鐘)與剩余量(單位:克)存在著較強(qiáng)的線性相關(guān)關(guān)系.如表是某?;瘜W(xué)社團(tuán)師生觀測(cè)該碘在5天內(nèi)衰減情況得出的一組數(shù)據(jù),則對(duì)的線性回歸方程可以是()

(單位:分鐘)1020304050

(單位:克)22.51917.51511

A.B.C.D.

2.(2023·黑龍江哈爾濱九中高二月考)已知具有相關(guān)關(guān)系的兩個(gè)隨機(jī)變量的一組觀測(cè)數(shù)據(jù)的散點(diǎn)圖分布在函數(shù)的圖象附近,設(shè),將其變換后得到線性方程,則()

A.B.C.D.

3.(2023·江蘇徐州高二月考)對(duì)于數(shù)據(jù)組,如果由線性回歸方程得到的對(duì)應(yīng)于自變量的估計(jì)值是,那么將稱(chēng)為相應(yīng)于點(diǎn)的殘差.某工廠為研究某種產(chǎn)品產(chǎn)量(噸)與所需某種原材料噸)的相關(guān)性,在生產(chǎn)過(guò)程中收集4組對(duì)應(yīng)數(shù)據(jù)如下表所示:

3456

2.534

根據(jù)表中數(shù)據(jù),得出關(guān)于的線性回歸方程為,據(jù)此計(jì)算出樣本處的殘差為-0.15,則表中的值為()

A.3.3B.4.5C.5D.5.5

4.(2023·全國(guó)高二課時(shí)練習(xí))某網(wǎng)店經(jīng)銷(xiāo)某商品,為了解該商品的月銷(xiāo)量(單位:千件)與售價(jià)(單位:元/件)之間的關(guān)系,收集組數(shù)據(jù)進(jìn)行了初步處理,得到如下數(shù)表:

根據(jù)表中的數(shù)據(jù)可得回歸直線方程,以下說(shuō)法正確的是()

A.,具有負(fù)相關(guān)關(guān)系,相關(guān)系數(shù)

B.每增加一個(gè)單位,平均減少個(gè)單位

C.第二個(gè)樣本點(diǎn)對(duì)應(yīng)的殘差

D.第三個(gè)樣本點(diǎn)對(duì)應(yīng)的殘差

5.(多選題)(2023·福建三明一中高二月考)某種產(chǎn)品的價(jià)格x(單位:元/)與需求量y(單位:)之間的對(duì)應(yīng)數(shù)據(jù)如下表所示:

x1015202530

y1110865

根據(jù)表中的數(shù)據(jù)可得回歸直線方程,則以下正確的是()

A.相關(guān)系數(shù)

B.

C.若該產(chǎn)品價(jià)格為35元,則日需求量大約為

D.第四個(gè)樣本點(diǎn)對(duì)應(yīng)的殘差為

6.(多選題)(2023·全國(guó)高二專(zhuān)題練習(xí))年的“金九銀十”變成“銅九鐵十”,全國(guó)各地房?jī)r(jià)“跳水”嚴(yán)重,但某地二手房交易卻“逆市”而行.下圖是該地某小區(qū)年月至年月間,當(dāng)月在售二手房均價(jià)(單位:萬(wàn)元/平方米)的散點(diǎn)圖.(圖中月份代碼分別對(duì)應(yīng)年月年月)

根據(jù)散點(diǎn)圖選擇和兩個(gè)模型進(jìn)行擬合,經(jīng)過(guò)數(shù)據(jù)處理得到的兩個(gè)回歸方程分別為和,并得到以下一些統(tǒng)計(jì)量的值:

注:是樣本數(shù)據(jù)中的平均數(shù),是樣本數(shù)據(jù)中的平均數(shù),則下列說(shuō)法正確的是()

A.當(dāng)月在售二手房均價(jià)與月份代碼呈負(fù)相關(guān)關(guān)系

B.由預(yù)測(cè)年月在售二手房均價(jià)約為萬(wàn)元/平方米

C.曲線與都經(jīng)過(guò)點(diǎn)

D.模型回歸曲線的擬合效果比模型的好

二、填空題

7.(2023·江西贛州市·高二期末)下面是兩個(gè)變量的一組數(shù)據(jù):

12345678

191625364964

這兩個(gè)變量之間的線性回歸方程為,變量中缺失的數(shù)據(jù)是___________.

8.(2023·扶風(fēng)縣法門(mén)高中高二月考)已知一組數(shù)據(jù)點(diǎn),,,…,,用最小二乘法得到其線性回歸方程為,若數(shù)據(jù),,,…的均值為,則可以估計(jì)數(shù)據(jù),,,…的均值為_(kāi)_____.

9.(2023·全國(guó)高二課時(shí)練習(xí))某單位為了落實(shí)“綠水青山就是金山銀山”理念,制訂節(jié)能減排的目標(biāo),調(diào)查了用電量(單位:千瓦·時(shí))與氣溫(單位:℃)之間的關(guān)系,隨機(jī)選取了4天的用電量與當(dāng)天氣溫,并制作了以下對(duì)照表:

(單位:℃)171410

(單位:千瓦·時(shí))24343864

由表中數(shù)據(jù)得回歸直線方程為,則由此估計(jì)當(dāng)某天氣溫為2℃時(shí),當(dāng)天用電量為_(kāi)_______千瓦·時(shí)

10.(2023·全國(guó)高二課時(shí)練)已知具有相關(guān)關(guān)系的兩個(gè)隨機(jī)變量的一組數(shù)據(jù)的散點(diǎn)圖如圖所示,可以用來(lái)擬合,設(shè),將其變換后得到線性回歸方程,若,則__________.

三、解答題

11.(2023·吉林長(zhǎng)春市·高二月考)隨著互聯(lián)網(wǎng)行業(yè)、傳統(tǒng)行業(yè)和實(shí)體經(jīng)濟(jì)的融合不斷加深,互聯(lián)網(wǎng)對(duì)社會(huì)經(jīng)濟(jì)發(fā)展的推動(dòng)效果日益顯著,某大型超市計(jì)劃在不同的線上銷(xiāo)售平臺(tái)開(kāi)設(shè)網(wǎng)店,為確定開(kāi)設(shè)網(wǎng)店的數(shù)量,該超市在對(duì)網(wǎng)絡(luò)上相關(guān)店鋪?zhàn)隽顺浞值恼{(diào)查后,得到下列信息,如圖所示(其中表示開(kāi)設(shè)網(wǎng)店數(shù)量,表示這個(gè)分店的年銷(xiāo)售額總和),現(xiàn)已知,求解下列問(wèn)題;

(1)經(jīng)判斷,可利用線性回歸模型擬合與的關(guān)系,求解關(guān)于的回歸方程;

(2)按照經(jīng)驗(yàn),超市每年在網(wǎng)上銷(xiāo)售獲得的總利潤(rùn)(單位:萬(wàn)元)滿(mǎn)足,請(qǐng)根據(jù)(1)中的線性回歸方程,估算該超市在網(wǎng)上開(kāi)設(shè)多少分店時(shí),才能使得總利潤(rùn)最大.

參考公式;線性回歸方程,其中

12.(2023·全國(guó)高二專(zhuān)題練)中國(guó)茶文化博大精深,已知茶水的口感與茶葉類(lèi)型以及水溫有關(guān).經(jīng)驗(yàn)表明,某種綠茶用的水泡制,再等到茶水溫度降至?xí)r飲用,可以產(chǎn)生最佳口感.某學(xué)習(xí)研究小組通過(guò)測(cè)量,得到了下面表格中的數(shù)據(jù)(室溫是).

泡制時(shí)間01234

水溫8579747165

4.24.14.03.93.8

(1)小組成員根據(jù)上面表格中的數(shù)據(jù)繪制散點(diǎn)圖,并根據(jù)散點(diǎn)圖分布情況,考慮到茶水溫度降到室溫(即)就不能再降的事實(shí),決定選擇函數(shù)模型來(lái)刻畫(huà).

①令,求出關(guān)于的線性回歸方程;

②利用①的結(jié)論,求出中的與.

(2)你認(rèn)為該品種綠茶用的水大約泡制多久后飲用,可以產(chǎn)生最佳口感?

參考數(shù)據(jù):.參考公式:.

人教版高中數(shù)學(xué)選擇性必修第三冊(cè)

8.2一元線性回歸模型及其應(yīng)用B組能力提高訓(xùn)練(解析版)

一、選擇題

1.(2023·全國(guó)高二課時(shí)練)某種碘是一種放射性物質(zhì),該碘最初一段時(shí)間衰減的時(shí)間(單位:分鐘)與剩余量(單位:克)存在著較強(qiáng)的線性相關(guān)關(guān)系.如表是某?;瘜W(xué)社團(tuán)師生觀測(cè)該碘在5天內(nèi)衰減情況得出的一組數(shù)據(jù),則對(duì)的線性回歸方程可以是()

(單位:分鐘)1020304050

(單位:克)22.51917.51511

A.B.C.D.

【答案】B

【詳解】根據(jù)題意數(shù)據(jù)分析得到:該碘最初一段時(shí)間衰減的時(shí)間與剩余量存在著較強(qiáng)的負(fù)線性相關(guān)關(guān)系,假設(shè)回歸方程為,由選項(xiàng)得到,又,,所以,故對(duì)的線性回歸方程為:.

2.(2023·黑龍江哈爾濱九中高二月考)已知具有相關(guān)關(guān)系的兩個(gè)隨機(jī)變量的一組觀測(cè)數(shù)據(jù)的散點(diǎn)圖分布在函數(shù)的圖象附近,設(shè),將其變換后得到線性方程,則()

A.B.C.D.

【答案】B

【詳解】因,則,于是有,所以.故選:B

3.(2023·江蘇徐州高二月考)對(duì)于數(shù)據(jù)組,如果由線性回歸方程得到的對(duì)應(yīng)于自變量的估計(jì)值是,那么將稱(chēng)為相應(yīng)于點(diǎn)的殘差.某工廠為研究某種產(chǎn)品產(chǎn)量(噸)與所需某種原材料噸)的相關(guān)性,在生產(chǎn)過(guò)程中收集4組對(duì)應(yīng)數(shù)據(jù)如下表所示:

3456

2.534

根據(jù)表中數(shù)據(jù),得出關(guān)于的線性回歸方程為,據(jù)此計(jì)算出樣本處的殘差為-0.15,則表中的值為()

A.3.3B.4.5C.5D.5.5

【答案】B

【詳解】由題意可知,在樣本(4,3)處的殘差-0.15,則,即,

解得,即,又,且線性方程過(guò)樣本中心點(diǎn)(,),

則,則,解得.故答案為:B

4.(2023·全國(guó)高二課時(shí)練習(xí))某網(wǎng)店經(jīng)銷(xiāo)某商品,為了解該商品的月銷(xiāo)量(單位:千件)與售價(jià)(單位:元/件)之間的關(guān)系,收集組數(shù)據(jù)進(jìn)行了初步處理,得到如下數(shù)表:

根據(jù)表中的數(shù)據(jù)可得回歸直線方程,以下說(shuō)法正確的是()

A.,具有負(fù)相關(guān)關(guān)系,相關(guān)系數(shù)

B.每增加一個(gè)單位,平均減少個(gè)單位

C.第二個(gè)樣本點(diǎn)對(duì)應(yīng)的殘差

D.第三個(gè)樣本點(diǎn)對(duì)應(yīng)的殘差

【答案】D

【詳解】對(duì)于A選項(xiàng):由相關(guān)系數(shù)絕對(duì)值的不超過(guò)1,A不正確;對(duì)于B選項(xiàng):由回歸直線方程知,每增加一個(gè)單位,平均減少個(gè)單位,B不正確;對(duì)于C選項(xiàng):第二個(gè)樣本點(diǎn)對(duì)應(yīng)的殘差,C不正確;對(duì)于D選項(xiàng):第三個(gè)樣本點(diǎn)對(duì)應(yīng)的殘差,D正確.故選:D

5.(多選題)(2023·福建三明一中高二月考)某種產(chǎn)品的價(jià)格x(單位:元/)與需求量y(單位:)之間的對(duì)應(yīng)數(shù)據(jù)如下表所示:

x1015202530

y1110865

根據(jù)表中的數(shù)據(jù)可得回歸直線方程,則以下正確的是()

A.相關(guān)系數(shù)

B.

C.若該產(chǎn)品價(jià)格為35元,則日需求量大約為

D.第四個(gè)樣本點(diǎn)對(duì)應(yīng)的殘差為

【答案】BCD

【詳解】解:對(duì)A、B:由表中的數(shù)據(jù),,,

將,代入得,所以A選項(xiàng)錯(cuò)誤,B選項(xiàng)正確;

對(duì)C:由題意代入得,所以日需求量大約為,

所以C選項(xiàng)正確;對(duì)D:第四個(gè)樣本點(diǎn)對(duì)應(yīng)的殘差為,所以D選項(xiàng)正確;故選:BCD.

6.(多選題)(2023·全國(guó)高二專(zhuān)題練習(xí))年的“金九銀十”變成“銅九鐵十”,全國(guó)各地房?jī)r(jià)“跳水”嚴(yán)重,但某地二手房交易卻“逆市”而行.下圖是該地某小區(qū)年月至年月間,當(dāng)月在售二手房均價(jià)(單位:萬(wàn)元/平方米)的散點(diǎn)圖.(圖中月份代碼分別對(duì)應(yīng)年月年月)

根據(jù)散點(diǎn)圖選擇和兩個(gè)模型進(jìn)行擬合,經(jīng)過(guò)數(shù)據(jù)處理得到的兩個(gè)回歸方程分別為和,并得到以下一些統(tǒng)計(jì)量的值:

注:是樣本數(shù)據(jù)中的平均數(shù),是樣本數(shù)據(jù)中的平均數(shù),則下列說(shuō)法正確的是()

A.當(dāng)月在售二手房均價(jià)與月份代碼呈負(fù)相關(guān)關(guān)系

B.由預(yù)測(cè)年月在售二手房均價(jià)約為萬(wàn)元/平方米

C.曲線與都經(jīng)過(guò)點(diǎn)

D.模型回歸曲線的擬合效果比模型的好

【答案】BD

【詳解】對(duì)于A,散點(diǎn)從左下到右上分布,所以當(dāng)月在售二手房均價(jià)y與月份代碼x呈正相關(guān)關(guān)系,故A不正確;對(duì)于B,令,由,

所以可以預(yù)測(cè)2023年2月在售二手房均價(jià)約為1.0509萬(wàn)元/平方米,故B正確;

對(duì)于C,非線性回歸曲線不一定經(jīng)過(guò),故C錯(cuò)誤;

對(duì)于D,越大,擬合效果越好,由,故D正確.故選:BD

二、填空題

7.(2023·江西贛州市·高二期末)下面是兩個(gè)變量的一組數(shù)據(jù):

12345678

191625364964

這兩個(gè)變量之間的線性回歸方程為,變量中缺失的數(shù)據(jù)是___________.

【答案】4;

【詳解】設(shè)變量中缺失的數(shù)據(jù)為,則,

,因?yàn)檫@兩個(gè)變量之間的線性回歸方程為,所以,解得.

8.(2023·扶風(fēng)縣法門(mén)高中高二月考)已知一組數(shù)據(jù)點(diǎn),,,…,,用最小二乘法得到其線性回歸方程為,若數(shù)據(jù),,,…的均值為,則可以估計(jì)數(shù)據(jù),,,…的均值為_(kāi)_____.

【答案】2

【詳解】因?yàn)榛貧w方程為,且數(shù)據(jù),,,…,的均值為,即,

把,代入回歸直線方程,可得,所以可以估計(jì)數(shù)據(jù),,,…,的均值為.

9.(2023·全國(guó)高二課時(shí)練習(xí))某單位為了落實(shí)“綠水青山就是金山銀山”理念,制訂節(jié)能減排的目標(biāo),調(diào)查了用電量(單位:千瓦·時(shí))與氣溫(單位:℃)之間的關(guān)系,隨機(jī)選取了4天的用電量與當(dāng)天氣溫,并制作了以下對(duì)照表:

(單位:℃)171410

(單位:千瓦·時(shí))24343864

由表中數(shù)據(jù)得回歸直線方程為,則由此估計(jì)當(dāng)某天氣溫為2℃時(shí),當(dāng)天用電量為_(kāi)_______千瓦·時(shí)

【答案】

【詳解】由題意,根據(jù)表格中的數(shù)據(jù),可得,

將點(diǎn)代入回歸直線方程,求得,

所以回歸直線方程為,當(dāng)時(shí),代入求得.

10.(2023·全國(guó)高二課時(shí)練)已知具有相關(guān)關(guān)系的兩個(gè)隨機(jī)變量的一組數(shù)據(jù)的散點(diǎn)圖如圖所示,可以用來(lái)擬合,設(shè),將其變換后得到線性回歸方程,若,則__________.

【答案】

【詳解】,因?yàn)樽儞Q后得到線性回歸方程,所以有,又,所以,因此,

故答案為:

三、解答題

11.(2023·吉林長(zhǎng)春市·高二月考)隨著互聯(lián)網(wǎng)行業(yè)、傳統(tǒng)行業(yè)和實(shí)體經(jīng)濟(jì)的融合不斷加深,互聯(lián)網(wǎng)對(duì)社會(huì)經(jīng)濟(jì)發(fā)展的推動(dòng)效果日益顯著,某大型超市計(jì)劃在不同的線上銷(xiāo)售平臺(tái)開(kāi)設(shè)網(wǎng)店,為確定開(kāi)設(shè)網(wǎng)店的數(shù)量,該超市在對(duì)網(wǎng)絡(luò)上相關(guān)店鋪?zhàn)隽顺浞值恼{(diào)查后,得到下列信息,如圖所示(其中表示開(kāi)設(shè)網(wǎng)店數(shù)量,表示這個(gè)分店的年銷(xiāo)售額總和),現(xiàn)已知,求解下列問(wèn)題;

(1)經(jīng)判斷,可利用線性回歸模型擬合與的關(guān)系,求解關(guān)于的回歸方程;

(2)按照經(jīng)驗(yàn),超市每年在網(wǎng)上銷(xiāo)售獲得的總利潤(rùn)(單位:萬(wàn)元)滿(mǎn)足,請(qǐng)根據(jù)(1)中的線性回歸方程,估算該超市在網(wǎng)上開(kāi)設(shè)多少分店時(shí),才能使得總利潤(rùn)最大.

參考公式;線性回歸方程,其中

【詳解】

(1)由題意得,

所以.

(2)由(1)知,,

所以當(dāng)或時(shí)能獲得總利潤(rùn)最大.

12.(2023·全國(guó)高二專(zhuān)題練)中國(guó)茶文化博大精深,已知茶水的口感與茶葉類(lèi)型以及水溫有關(guān).經(jīng)驗(yàn)表明,某種綠茶用的水泡制,再等到茶水溫度降至?xí)r飲用,可以產(chǎn)生最佳口感.某學(xué)習(xí)研究小組通過(guò)測(cè)量,得到了下面表格中的數(shù)據(jù)(室溫是).

泡制時(shí)間01234

水溫8579747165

4.24.14.03.93.8

(1)小組成員根據(jù)上面表格中的數(shù)據(jù)繪制散點(diǎn)圖,并根據(jù)散點(diǎn)圖分布情況,考慮到茶水溫度降到室溫(即)就不能再降的事實(shí),決定選擇函數(shù)模型來(lái)刻畫(huà).

①令,求出關(guān)于的線性回歸方程;

②利用①的結(jié)論,求出中的與

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論