版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
瀘州市高2018級第一次教學質量診斷性考試數(shù)學(理科)本試卷分第I卷(選擇題)和第II卷(非選擇題)兩部分.第I卷1至2頁,第II卷3至4頁.共150分.考試時間120分鐘.注意事項:1.答題前,先將自己的姓名、準考證號填寫在試卷和答題卡上,并將準考證號條形碼粘貼在答題卡上的指定位置.2.選擇題的作答:每小題選出答案后,用2B鉛筆把答題卡上對應題的答案標號涂黑.3.填空題和解答題的作答:用簽字筆直接答在答題卡上對應的答題區(qū)域內,作圖題可先用鉛筆繪出,確認后再用0.5毫米黑色簽字筆描清楚,寫在試題卷、草稿紙和答題卡上的非答題區(qū)域均無效.4.考試結束后,請將本試題卷和答題卡一并上交.第I卷(選擇題共60分)一、選擇題:本大題共有12個小題,每小題5分,共60分.每小題給出的四個選項中,只有一項是符合要求的.4x≤0},Bx|x2n1,nN,則ABAxx1.已知集合{|2A.3B.1,3C.1,3,4D.1,2,3,42.“sincos”是“cos20”的A.充分但不必要條件C.充要條件B.必要但不充分條件D.既不充分也不必要條件3.已知log5,bln1,c1.51.1,則a,b,c的大小關系正確的是a23A.bcabacC.acbD.abcB.4.我國的5G通信技術領先世界,5G技術的數(shù)學原理之一是著名的香農(Shannon)公式,香農提出并嚴格證明了“在被高斯白噪聲干擾的信道中,計算最大信息傳送速率C的公式SCWlog(1)”,其中W是信道帶寬(赫茲),S是信道內所傳信號的平均功率(瓦),2NSN是信道內部的高斯噪聲功率(瓦),其中叫做信噪比.根據(jù)此公N式,在不改變W的前提下,將信噪比從99提升至,使得C大約增加33了60%,則的值大約為(參考數(shù)據(jù):100.21.58)A.1559C.1579B.3943D.251222正視圖側視圖5.右圖為某旋轉體的三視圖,則該幾何體的側面積為A.10C.9B.8D.102俯視圖高三·理數(shù)第1頁共4頁6.函數(shù)3xy(其中e是自然對數(shù)的底數(shù))的圖象大致為xeexyyyyxxxOxOOOA.B.C.D.x0)與x軸的兩個交點,且Ax7.已知,0,,0兩點是函數(shù)Bxfx()2sin()(A、612兩點間距離的最小值為,則的值為B3A.2B.3C.4D.5()滿足f(2xfx)(),f(2x)f(x)x[0,1],當8.定義在上的函數(shù)R時,,fxx()2fxf(x)的圖象與g(x)|x|的圖象的交點個數(shù)為B.4C.5則函數(shù)A.3D.69.在長方體ABCDABCD中,,分別為,,分別為,EFOMCDBC的中點,BDEF的中11111111點,則下列說法錯誤的是D1EC1CA.四點B、D、E、F在同一平面內MA1FB1B.三條直線BF,DE,CC1有公共點DC.直線與直線OF不是異面直線ACOA1BD.直線上存在點使,,三點共線ACNMNO12logx0的兩根分別為,,則下列關系正確的是xx10.已知方程2x12A.12xxxx2B.0xx1C.xx1D.12121212角形,且平面平和△BDC是邊長為11.已知三棱錐中,2的等邊三ABCDBACABD△面,BCD該三棱錐外接球的表面積為2016A.4C.8B.D.331311fx12.已知函數(shù)()ax3x2(a0),若存在實數(shù)x(1,0)0且,使()(),fxfx0220則實數(shù)的a取值范圍為22A.(,5)B.(,3)(3,5)331818C.(,6)D.(,4)(4,6)77高三·理數(shù)第2頁共4頁第II卷(非選擇題共90分)注意事項:(1)非選擇題的答案必須用0.5毫米黑色簽字筆直接答在答題卡上,作圖題可先用鉛筆繪出,確認后再用0.5毫米黑色簽字筆描清楚,答在試題卷和草稿紙上無效.(2)本部分共10個小題,共90分.二、填空題(本大題共4小題,每小題5分,共20分.把答案填在答題紙上)2x3,x≤013.已知函數(shù)f(x),則f(f(1))的值___________.21,x0xsinx(x[0,])與x軸所圍圖形的面積為.14.曲線y15.在平面直角坐標系xOy中,角與角均以Ox為始邊,它們的終邊關于y軸對稱.若tan1,則tan().316.如圖,棱長為1的正方體ABCD-A1B1C1D1中,P為線段A1B上的動點(不含端點),有下列結論:D1C1①平面⊥平面ADPA1AP;11A1B1②多面體CDPD的體積為定值;1③直線與BC所成的角可能為3;DPD1CP④APD△能是鈍角三角形.1BA其中結論正確的序號是(填上所有序號).三、解答題:共70分.解答應寫出文字說明、證明過程或演算步驟.第17~21題為必考題,每個試題考生都必須作答.第22、23題為選考題,考生根據(jù)要求作答.(一)必考題:共60分.17.(本題滿分12分)已知函數(shù)f(x)3sinx2cos2x1.2(Ⅰ)若f()23f(tan),求的值;6(Ⅱ)將函數(shù)f(x)圖象上所有點的縱坐標保持不變,橫坐標變?yōu)樵瓉淼?倍得函數(shù)g(x)2的圖象,若關于x的方程g(x)m0在[0,]上有解,求m的取值范圍.218.(本題滿分12分)已知曲線f(x)kxsinxb在點(,f())處的切線方程為2xy30.22(Ⅰ)求k,b的值;(Ⅱ)判斷函數(shù)f(x)在區(qū)間(0,)上零點的個數(shù),并證明.2高三·理數(shù)第3頁共4頁19.(本題滿分12分)a,b,c,已知asin(AB)csinBC.在△ABC中,角,,的對邊分別為ABC2(Ⅰ)求A;(Ⅱ)已知,求AD.c3,b1,邊BC上有一點D滿足S3S△ADC△ABD20.(本題滿分12分)如圖,在四棱錐S—ABCD中,底面ABCD是菱形,G是線段AB上一點(不含A,B),在平面SGD內過點G作GP//平面SBC交SD于點P.S(Ⅰ)寫出作點P、GP的步驟(不要求證明);BAD,ABSASBSD2,P是SD(Ⅱ)若的中3點,求平面SBC與平面SGD所成銳二面角的大小.AD21.(本題滿分12分)GCm1,e,e是自然,其中已知1B函數(shù)fxxmlnxmx對數(shù)的底數(shù).(Ⅰ)求函數(shù)fx的單調遞增區(qū)間;11,e恒成立時k的最大值為kxn對xcx(Ⅱ)設關于的不等式fxxxlnx1,e求nc的取值范圍.(,),kRn(二)選考題:共10分.請考生在第22、23題中任選一題作答,如果多做,則按所做的第一題22.(本題滿分計分.10分)選修4-4:坐標系與參數(shù)方程在平面直角坐標系xOy中,曲線C是圓心在(0,2),半徑為2的圓,曲線C的參數(shù)12x22cost方程為y22sin(t)(t為參數(shù)且0≤t≤),以坐標原點O為極點,x軸正半軸為極24軸建立極坐標系.(Ⅰ)求曲線C的極坐標方程;1(Ⅱ)若曲線C與兩坐標軸分別交于A,B兩點,點P為線段AB上任意一點,直線OP與求OM的最大值.OP2曲線C交于點M(異于原點),123.(本題滿分10分)選修4-5:不等式選講若a0,b0且2ab23ab,已知ab有最小值為k.(Ⅰ)求k的值;(Ⅱ)若xR使不等式xmx2km成立,求實數(shù)的取值范圍.0高三·理數(shù)第4頁共4頁瀘州市高2018級第一次教學質量診斷性考試數(shù)學(理科)參考答案及評分意見評分說明:1.本解答給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內容比照評分參考制訂相應的評分細則.2.對計算題,當考生的解答在某一步出現(xiàn)錯誤時,如果后繼部分的解答未改變該題的內容和難度.可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應得分數(shù)的一半;如果后繼部分的解答有較嚴重的錯誤,就不再給分.3.解答右側所注分數(shù),表示考生正確做到這一步應得的累加分數(shù).4.只給整數(shù)分數(shù),選擇題和填空題不給中間分.一、題號1答案B2345678910C11D12DAACDABAC二、填空題13.33415.16.①②④14.2三、解答題17.解:(Ⅰ)因為f(x)3sinx2cos2x123sinxcosx··················································································1分2sin(x),···················································································2分6因為f()23f(),所以sin()23sin,·······························3分663sincos123sin,·························································4分所以22即33sincos,··········································································5分所以tan3;··············································································6分9(Ⅱ)f(x)圖象上所有點橫坐標變?yōu)樵瓉淼?倍得到函數(shù)g(x)的圖象,2所以函數(shù)g(x)的解析式為g(x)f(2x)2sin(2x),······························8分65,···············································10分因0x,所以≤2x≤2666高三·理數(shù)第5頁共4頁故m的取值范圍為[1,2].········································12分f(x)ksinxkxcosx,···································································2分所以1g(x)2,18.解:(Ⅰ)因為f()ksin2cos2所以kk,··························································3分b,························································4分22k又因為f()ksinb2222點(,f())處的切線方程為2xy30.2所以2k2,···························································································5分b3.··································································································6分(Ⅱ)f(x)在(0,)上有且只有一個零點,························································7分2因為f(x)2sinx2xcosx,···································································8分當x(0,)時,f(x)0,······································································9分2所以f(x)在x(0,)上為單調遞增函數(shù)且圖象連續(xù)不斷,·····························10分2因為f(0)30,f()30,·······················································11分2f(x)在(0,)上有且只有一個零點.····················································12分2所以(Ⅱ)因為f(x)2sinx2xcosx,設g(x)sinxxcosx,g(x)2cosxxsinx0恒成立.·······································7分當x(,)時,2所以g(x)在(,)上單調遞減,································································8分2又g()0,g()0,所以t(,)使得g(t)0,·····································9分22所以f(x)在(,t]為單調遞增函數(shù),在[t,)為單調遞減函數(shù),························10分2因為2f()0,f()0,········································································11分所以f(x)在(,)上有且只有一個零點.···················································12分219.解:(Ⅰ)由AB+CBCAA可得sin(AB)sin(C)sinC,sinsincos,222)csinBCA,得asinCccos,············································2分又asin(AB22A得sinsinsinCcos,··························································3分AC由正弦定理2A因sinC0,所以sinAcos,2AAA則2sincoscos,············································································4分222cos0因0A,所以·······································································5分A222高三·理數(shù)第6頁共4頁A1sin=,即=,則A.·····························································6分2226A所以3(Ⅱ)解法一:設ABD的AB邊上的高為,h1BADC的AC邊上的高為h,2,c3,b1,因S3Sh1ABDADC所以31bh,1Dchh2C22A12所以hh,AD是ABC角A的內角平分線,·········································8分1230,所以BAD34因S3S,可知S,··················································10分ABCSABDADCABD1sin3031ABACsin60,所以ABAD24233.·················································································12分所以AD4解法二:設BAD=(0),則=,················································7分DAC33因S3S,c3,b1ADCABD所以cADsin311sin(),bAD223sinsin(),········································································8分3所以所以sin3cos1sin,所以tan3,223因0所以30,BAD33因S3S可知S························································10分ABCS4ABDADCABD1sin3031ABACsin60所以ABAD24233,················································································12分所以AD4解法三:設ADx,BDA=,則=,ADC在ABC中由c3,b1及余弦定理可得:a22bccosAbc22因a7,························································································7分因S3SABDADC=37,·········································································8分可知BD3DC4在ABD中AB2BD2AD22BDADcos,即963AD237ADcos,··························································10分162在ADC中,17AD27ADcos(),162即17AD2+7ADcos,····························································11分162高三·理數(shù)第7頁共4頁33.················································································12分所以AD420.解:(Ⅰ)第一步:在平面ABCD內作GH‖BC交CD于點H;·······································2分第二步:在平面內作HP‖SC交SD于P;·············································4分SCD第三步:連接GP,點P、GP即為所求.······················································5分(Ⅱ)解法一:因是SD的中點,HP//SC,所以H是CD的中點,···························6分P而GH//BC,所以G是AB的中點.·····················································7分連AC,GD交于O,連SO,設S在底面ABCD的射影為M,因為SASBSDMAMBMD,即M為ABD的外心,,所以所以M與O重合,·········································································8分233262,所以SO,SD,OC2AC43,3因OD33OGOE,OS分別為x,y,z軸建立空過O作OE//GB交BC于E,以,間直角坐標系,則(0,0,26),B(3,1,0),C(3233,2,0),·······················9分S33,1,26所以(SB),BC(3,1,0),設平面的法向量為3SBC3n(x,y,z),zSnSB33xy26z03,則PnBC3xy0AD取z2,則x1,y3,所以(1,3,2).····················10分M(O)HGnC又GBx平面,SGDyB故GB(0,1,0)為平面的法向量,···············································11分SGD設平面與平面所成銳二面角的大小為,SBCSGD|nGB|32,則cos|n||GB|62(0,),所以.····························································12分因為24成銳二面角的大小為.4故平面與平面所SBCSGD解法二:延長DG,CB交與I,連接SI,取SI的中點K,連接GK,BK,,GP因為GP//平面,平面平面SGDSI平面,SGDSBCSBC所以GP//SI,··············································································7分又P是SD的中點,則G是DI的中點,故GIGDGS,················································8分GKSI所以,又GB平面,SIDBKGCSID所以為二面角的平面角.···········································10分SO2IO222,SG2SK21,SGI在中,SGGI3,SI則SK2,從而GK又GE1,BGGK,故BKG,4高三·理數(shù)第8頁共4頁故平面與平面所成銳二面角的大小為.SGD·····························12分SBC4mlnxmx0,m1,e,121.解:(Ⅰ)因為fxxxmx2mx1,因x0,m1,e······································1分11所以fxx2xx21m0,2時,fx的增區(qū)間為,······················2分所以①當m40即2240即2me時,方程2②當m10的兩根為xmxmm24,xmm4,2x1222fx的增區(qū)間為0,x,x,,·····························································4分12綜上①當1m0,2時,fx的增區(qū)間為,m242m2m②當2me時,fx的增區(qū)間為0,,m4,,2········································································································5分(Ⅱ)原不等式km1lnxxxlnxn.·····················································6分x因m1,ex1,e,,所以m1lnxxxlnxn1lnxxxlnxn,xx1lnxxxlnxn,···································································7分令gxxlnxxn即gxlnxxn,即px11,,令pxx2x所以px在x1,e上遞增;····································································8分①當p10即n1時,n1,e,所以n1,因為1,e上遞增,,所以在gx當x1,epx0,即gx0,cgxg1n,所以minnc2n2,···············································································9分故時,②當pe0ne1,e即x1,epx0,即gx0,因為,所以gx在1,en2ge,e上遞減,所以cgxmin故ncn2ne1,e21························································10分eee③當p1pe0即n1,e1時,又pxlnxxn在1,e上遞增,,使得x1,epx0,即0nxlnx所以存在唯一實數(shù),000則當x1,x時px0,即gx0,當xx,e時px0即gx0,故gx在00x1,x上減,xx,e上增,00高三·理數(shù)第9頁共4頁1lnxxxxnlnx1ln00cgxgx所以.························11分x0000x0min0所以nclnx1xlnxx1,0x0000x0x210,0x設uxx11x1,e),則ux1('0x0x20001e1,e,nc2,eux在上遞增所以.所以2.···································································12分nc2,e1綜上所述e22.解:(Ⅰ)解法一:設曲線C與過極點且垂直于極軸的直線相交于異于極點的點E,且曲1線C上任意點F(,),邊接OF,EF,則OF⊥EF,·····································2分1在△OEF中,4cos()4sin,······················································4分2解法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 超聲科院感防控制度
- 行政事業(yè)會計制度
- 養(yǎng)老機構后勤工作制度
- 2026甘肅張掖市生態(tài)環(huán)境局甘州分局招聘環(huán)境監(jiān)管監(jiān)測輔助人員4人備考考試題庫附答案解析
- 2026年上半年黑龍江事業(yè)單位聯(lián)考牡丹江市招聘817人備考考試試題附答案解析
- 2026山東日照市市屬事業(yè)單位招聘初級綜合類崗位人員參考考試題庫附答案解析
- 2026年甘肅酒泉敦煌空港經創(chuàng)發(fā)展有限公司招聘參考考試題庫附答案解析
- 2026廣西北海市合浦縣民政局招錄城鎮(zhèn)公益性崗位人員11人備考考試題庫附答案解析
- 2026年吉安吉星養(yǎng)老服務有限公司招聘護理員參考考試試題附答案解析
- 生產安全與自查自檢制度
- 2025年主管護師考試真題及答案
- 2025年威海銀行校招筆試面試及答案
- DB51T 3342-2025爐灶用合成液體燃料經營管理規(guī)范
- 2026年浙江康復醫(yī)療中心公開招聘25人筆試參考題庫及答案解析
- 2025稅務副科級選拔筆試題及答案
- 山東省淄博市張店區(qū)2024-2025學年七年級上學期1月期末考試英語試題
- 甲醛生產培訓課件
- 檔案保護修復員工作總結報告
- 2025年及未來5年市場數(shù)據(jù)中國覆膜機市場調查研究及行業(yè)投資潛力預測報告
- 工程機械設備租賃服務方案投標文件(技術方案)
- 麻醉科術后疼痛管理流程
評論
0/150
提交評論