陜西省商洛商南縣聯考2024屆數學八上期末聯考試題含解析_第1頁
陜西省商洛商南縣聯考2024屆數學八上期末聯考試題含解析_第2頁
陜西省商洛商南縣聯考2024屆數學八上期末聯考試題含解析_第3頁
陜西省商洛商南縣聯考2024屆數學八上期末聯考試題含解析_第4頁
陜西省商洛商南縣聯考2024屆數學八上期末聯考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省商洛商南縣聯考2024屆數學八上期末聯考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.立方根等于本身的數是()A.-1 B.0 C.±1 D.±1或02.點(2,-3)關于原點對稱的點的坐標是()A.(-2,3) B.(2,3) C.(-3,-2) D.(2,-3)3.如圖,在四邊形ABCD中,,,,.分別以點A,C為圓心,大于長為半徑作弧,兩弧交于點E,作射線BE交AD于點F,交AC于點O.若點O是AC的中點,則CD的長為()A. B.4 C.3 D.4.如圖,設點P到原點O的距離為p,將x軸的正半軸繞O點逆時針旋轉與OP重合,記旋轉角為,規(guī)定[p,]表示點P的極坐標,若某點的極坐標為[2,135°],則該點的平面坐標為()

A.() B.() C.() D.()5.如果一個數的平方根與立方根相同,那么這個數是().A.0 B. C.0和1 D.0或6.如圖,在中,,在上取一點,使,過點作,連接,使,若,則下列結論不正確的是()A. B. C.平分 D.7.下列說法正確的是()A.(-2)2的平方根是-2 B.-3是-9的負的平方根C.的立方根是2 D.(-1)2的立方根是-18.一個正數的平方根為2x+1和x﹣7,則這個正數為()A.5 B.10 C.25 D.±259.如圖,∠AOB=60°,OA=OB,動點C從點O出發(fā),沿射線OB方向移動,以AC為邊在右側作等邊△ACD,連接BD,則BD所在直線與OA所在直線的位置關系是()A.平行 B.相交 C.垂直 D.平行、相交或垂直10.下列代數式中,屬于分式的是()A.﹣3 B. C.﹣a﹣b D.﹣二、填空題(每小題3分,共24分)11.把命題“在同一平面內,垂直于同一條直線的兩條直線平行”改寫成“如果……那么……”的形式為____________________________________________________.12.利用分式的基本性質填空:(1)=,(a≠0)(2)=.13.一個多邊形的每個外角都是36°,這個多邊形是______邊形.14.數學家發(fā)明了一個魔術盒,當任意數對(a,b)進入其中時,會得到一個新的數:(a﹣2)(b﹣1).現將數對(m,2)放入其中,得到數n,再將數對(n,m)放入其中后,最后得到的數是_____.(結果要化簡)15.一把工藝剪刀可以抽象為下圖,其中,若剪刀張開的角為,則.16.如圖,正比例函數y=2x的圖象與一次函數y=-3x+k的圖象相交于點P(1,m),則兩條直線與x軸圍成的三角形的面積為_______.17.如圖,∠BCD是△ABC的外角,CE平分∠BCD,若AB=AC,∠ECD=1.5°,則∠A的度數為_____.18.若,,則的值為__________.三、解答題(共66分)19.(10分)如圖,已知:AB∥CD.(1)在圖中,用尺規(guī)作∠ACD的平分線交AB于E點;(2)判斷△ACE的形狀,并證明.20.(6分)某社區(qū)準備在甲、乙兩位射箭愛好者中選出一人參加集訓,兩人各射了箭,他們的總成績(單位:環(huán))相同.小宇根據他們的成績繪制了如圖尚不完整的統(tǒng)計圖表,并計算了甲成績的平均數和方差(見小宇的作業(yè)).第次第次第次第次第次甲成績乙成績(1)a=_________(2)(3)參照小宇的計算方法,計算乙成績的方差;(4)請你從平均數和方差的角度分析,誰將被選中.21.(6分)如圖,AE=AD,∠ABE=∠ACD,BE與CD相交于O.(1)如圖1,求證:AB=AC;(2)如圖2,連接BC、AO,請直接寫出圖2中所有的全等三角形(除△ABE≌△ACD外).22.(8分)如圖,四邊形ABCD中,AB∥DC,AB=AD,求證:BD平分∠ADC.23.(8分)解不等式組,并把解集在數軸上表示出來.24.(8分)如圖,在由6個大小相同的小正方形組成的方格中,設每個小正方形的邊長均為1.(1)如圖①,,,是三個格點(即小正方形的頂點),判斷與的位置關系,并說明理由;(2)如圖②,連接三格和兩格的對角線,求的度數(要求:畫出示意圖,并寫出證明過程).25.(10分)如圖為一個廣告牌支架的示意圖,其中AB=13m,AD=12m,BD=5m,AC=15m,求圖中△ABC的周長和面積.26.(10分)解不等式,并利用數軸確定該不等式組的解.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據立方根的定義得到立方根等于本身的數.【題目詳解】解:∵立方根是它本身有3個,分別是±1,1.故選:D.【題目點撥】本題主要考查了立方根的性質.對于特殊的數字要記住,立方根是它本身有3個,分別是±1,1.立方根的性質:(1)正數的立方根是正數.(2)負數的立方根是負數.(3)1的立方根是1.2、A【分析】根據關于原點對稱點的坐標特點:兩個點關于原點對稱時,它們的坐標符號相反可得答案.【題目詳解】解:在平面直角坐標系中,關于原點對稱的兩點橫坐標和縱坐標均滿足互為相反數,點(2,-3)關于原點對稱的點的坐標是(-2,3).故選A.【題目點撥】本題考查了關于原點對稱點的坐標,熟練掌握坐標特征是解題的關鍵.3、A【分析】連接FC,根據基本作圖,可得OE垂直平分AC,由垂直平分線的性質得出.再根據ASA證明,那么,等量代換得到,利用線段的和差關系求出.然后在直角中利用勾股定理求出CD的長.【題目詳解】解:如圖,連接FC,則.,.在與中,,,,,.在中,,,,.故選A.【題目點撥】本題考查了作圖﹣基本作圖,勾股定理,線段垂直平分線的判定與性質,全等三角形的判定與性質,難度適中.求出CF與DF是解題的關鍵.4、B【分析】根據題意可得,,過點P作PA⊥x軸于點A,進而可得∠POA=45°,△POA為等腰直角三角形,進而根據等腰直角三角形的性質可求解.【題目詳解】解:由題意可得:,,過點P作PA⊥x軸于點A,如圖所示:∴∠PAO=90°,∠POA=45°,∴△POA為等腰直角三角形,∴PA=AO,∴在Rt△PAO中,,即,∴AP=AO=2,∴點,故選B.【題目點撥】本題主要考查平面直角坐標系點的坐標、勾股定理及旋轉的性質,熟練掌握平面直角坐標系點的坐標、勾股定理及旋轉的性質是解題的關鍵.5、A【分析】根據平方根、立方根的定義依次分析各選項即可判斷.【題目詳解】∵1的平方根是±1,1的立方根是1,0的平方根、立方根均為0,-1沒有平方根,-1的立方根是-1,∴平方根與它的立方根相同的數是0,故選A.【題目點撥】本題屬于基礎應用題,只需學生熟練掌握平方根、立方根的定義,即可完成.6、C【分析】根據垂直于同一條直線的兩直線平行即可判斷A,根據全等三角形的性質即可判斷B,根據同角的余角相等即可判斷D,排除法即可求解.【題目詳解】解:∵,∴∠ACB=∠FEC=90°,∴EF∥BC,∴∠F=∠FCB,∴A正確,又,∴△ACB≌△FEC,∴CE=BC=5cm,AC=EF=12cm,∴AE=AC-EC=12-5=7cm,∴B正確,∴,∵∠A+∠B=90°,∴∠FCB+∠B=90°,∴∴D正確,排除法選擇C,無法證明.【題目點撥】本題考查了全等三角形的判定和性質,平行線的性質等知識,熟悉證明三角形全等的方法是解題關鍵.7、C【分析】根據平方根的定義和立方根的定義逐一判斷即可.【題目詳解】A.(-2)2=4的平方根是±2,故本選項錯誤;B.-3是9的負的平方根,故本選項錯誤;C.=8的立方根是2,故本選項正確;D.(-1)2=1的立方根是1,故本選項錯誤.故選C.【題目點撥】此題考查的是平方根和立方根的判斷,掌握平方根的定義和立方根的定義是解決此題的關鍵.8、C【解題分析】一個正數的平方根為2x+1和x?7,∴2x+1+x?7=0x=2,2x+1=5(2x+1)2=52=25,故選C.9、A【解題分析】先判斷出OA=OB,∠OAB=∠ABO,分兩種情況判斷出△AOC≌△ABD,進而判斷出∠ABD=∠AOB=60°,即可得出結論.【題目詳解】∵∠AOB=60°,OA=OB,∴△OAB是等邊三角形,∴OA=AB,∠OAB=∠ABO=60°①當點C在線段OB上時,如圖1,∵△ACD是等邊三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA;②當點C在OB的延長線上時,如圖2,∵△ACD是等邊三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故選A.【題目點撥】本題考查了等邊三角形的判定和性質,全等三角形的判定和性質,求出∠ABD=60°是解本題的關鍵.10、B【分析】根據分式的定義:形如,A、B是整式,B中含有字母且B不等于0的式子叫做分式,逐一判斷即可.【題目詳解】解:A.﹣3不是分式,故本選項不符合題意;B.是分式,故本選項符合題意;C.﹣a﹣b不是分式,故本選項不符合題意;D.﹣不是分式,故本選項不符合題意.故選B.【題目點撥】此題考查的是分式的判斷,掌握分式的定義是解決此題的關鍵.二、填空題(每小題3分,共24分)11、“在同一平面內,如果兩條直線都垂直于同一直線,那么這兩直線互相平行”【分析】命題題設為:在同一平面內,兩條直線都垂直于同一條直線;結論為這兩條直線互相平行.【題目詳解】“在同一平面內,垂直于同一條直線的兩條直線互相平行”改寫成“如果???,那么???”的形式為:“在同一平面內,如果兩條直線都垂直于同一條直線,那么這兩條直線互相平行”.故答案為在同一平面內,如果兩條直線都垂直于同一條直線,那么這兩條直線互相平行.12、6a;a﹣2【解題分析】試題解析:第一個中,由前面分式的分母變成后面分式的分母乘以,因而分母應填:第二個式子,分子由第一個式子到第二個式子除以則第二個空應是:故答案為點睛:分式的基本性質是:在分式的分子、分母上同時乘以或除以同一個非0的數或式子,分式的值不變.13、十【分析】根據正多邊形的性質,邊數等于360°除以每一個外角的度數.【題目詳解】∵一個多邊形的每個外角都是36°,∴n=360°÷36°=10,故答案為:十.【題目點撥】本題考查多邊形內角與外角,掌握多邊形的外角和為解題關鍵.14、m2﹣5m+4【分析】魔術盒的變化為:數對進去后變成第一個數減2的差乘以第二個數減1的差的積.把各個數對放入魔術盒,計算結果即可.【題目詳解】解:當數對(m,2)放入魔術盒,得到的新數n=(m﹣2)(2﹣1)=m﹣2,把數對(n,m)放入魔術盒,得到的新數為:(n﹣2)(m﹣1)=(m﹣2﹣2)(m﹣1)=(m﹣4)(m﹣1)=m2﹣5m+4故答案為:m2﹣5m+4【題目點撥】本題考查了整式的乘法,多項式乘多項式,即用第一個多項式的每一項乘第二個多項式的每一項,熟練掌握多項式乘多項式是解題的關鍵.15、1【分析】根據等腰三角形的性質和三角形的內角和即可得到結論.【題目詳解】解:∵AC=AB,∠CAB=40°,∴∠B=(180°-40°)=1°,

故答案為:1.【題目點撥】本題考查了等腰三角形的性質,三角形的內角和,熟練掌握等腰三角形的性質是解題的關鍵.16、【解題分析】根據待定系數法將點P(1,m)代入函數中,即可求得m,k的值;即可求得交點坐標,根據三角形的面積公式即可得出結論.【題目詳解】∵正比例函數y=1x的圖象與一次函數y=﹣3x+k的圖象交于點P(1,m),∴把點P(1,m)代入得:,把①代入②得:m=1,k=5,∴點P(1,1),∴三角形的高就是1.∵y=﹣3x+5,∴A(0),∴OA,∴S△AOP.故答案為:.【題目點撥】本題考查了待定系數法求解析式;解題的關鍵是根據正比例函數和一次函數的圖象性質進行計算即可.17、30°【分析】根據CE平分∠BCD以及∠BCD是△ABC的外角,得出∠ACB的度數,再根據AB=AC可得∠B=∠ACB,根據三角形內角之和為180°即可求出∠A的度數.【題目詳解】∵CE平分∠BCD,∠ECD=1.5°,∴∠BCD=2∠ECD=105°,∴∠ACB=180°﹣∠BCD=180°﹣105°=75°,∵AB=AC,∴∠B=∠ACB=75°,∴∠A=30°,故答案為:30°.【題目點撥】本題考查了三角形的角度問題,掌握三角形外角的性質、三角形內角之和為180°、等腰三角形的性質是解題的關鍵.18、【分析】根據(m+n)2=(m?n)2+4mn,把m?n=3,mn=5,解答出即可;【題目詳解】根據(m+n)2=(m?n)2+4mn,把m?n=3,mn=5,得,(m+n)2=9+20=29∴=故答案為.【題目點撥】本題考查了完全平方公式,熟記完全平方公式及其變形,是正確解答的基礎.三、解答題(共66分)19、(1)如圖見解析;(2)△ACE是等腰三角形,證明見解析.【分析】(1)根據角平分線的作法,用尺規(guī)作圖;(2)根據平行線性質和角平分線定義,可得∠ACE=∠AEC.【題目詳解】(1)解:如圖即為所求.(2)△ACE是等腰三角形.證明:,∥∴∠ECD=∠AEC,∴∠ACE=∠AEC,△ACE是等腰三角形.【題目點撥】本題考核知識點:角平分線,平行線.解題關鍵點:理解角平分線定義和平行線性質.20、(1)4;(2)6;(3)1.6;(4)乙將被選中,詳見解析【分析】(1)根據兩人的總成績相同,進而求出a的值;(2)根據平均數的計算方法即可;

(3)直接利用方差公式求出即可;

(4)利用平均數以及方差的意義分析得出即可.【題目詳解】解:(1)∵兩人各射了5箭,他們的總成績相同,

甲的總成績?yōu)椋?+4+7+4+6=30;∴乙的總成績?yōu)椋?+5+7+a+7=30,解得:a=4,

(2)由(1)可知:×30=6,

(3)=[(7?6)2+(5?6)2+(7?6)2+(4?6)2+(7?6)2]=1.6;

(4)因為兩人成績的平均水平(平均數)相同,由于,所以乙的成績比甲穩(wěn)定,所以乙將被選中.【題目點撥】此題主要考查了平均數以及方差的求法和意義等知識,正確記憶方差公式是解題關鍵.21、(1)見解析;(2)△BDC≌△CEB,△DOB≌△EOC,△AOB≌△AOC,△ADO≌△AEO【分析】(1)根據“AAS”證明△ABE≌△ACD,從而得到AB=AC;(2)根據全等三角形的判定方法可得到4對全等三角形.【題目詳解】(1)證明:在△ABE和△ACD中,∴△ABE≌△ACD(AAS),∴AB=AC;(2)解:∵AD=AE,∴BD=CE,而△ABE≌△ACD,∴CD=BE,∵BD=CE,CD=BE,BC=CB,∴△BDC≌△CEB(SSS);∴∠BCD=∠EBC,∴OB=OC,∴OD=OE,而∠BOD=∠COE,∴△DOB≌△EOC(SAS);∵AB=AC,∠ABO=∠ACO,BO=CO,∴△AOB≌△AOC(SAS);∵AD=AE,OD=OE,AO=AO,∴△ADO≌△AEO(SSS).【題目點撥】本題考查了全等三角形的判定性質,熟練掌握全等三角形的種判定方法是解題的關鍵.22、見解析【分析】由AB=AD可得出∠ADB=∠ABD,由AB∥DC,利用“兩直線平行,內錯角相等”可找出∠ABD=∠BDC,結合∠ADB=∠ABD可得出∠ADB=∠BDC,進而可證出BD平分∠ADC.【題目詳解】證明:∵AB=AD,∴∠ADB=∠ABD,又∵AB∥DC,∴∠ABD=∠BDC,∴∠ADB=∠BDC,即BD平分∠ADC.【題目點撥】本題考查了等腰三角形的性質,平行線的性質,角平分線的判定,掌握等腰三角形的性質是解題的關鍵.23、-1≤x﹤,數軸表示見解析【分析】先分別解出每個不等式的解集,再把各個解集表示在數軸上,取公共部分即為不等式組的解集.【題目詳解】解:對于不等式組由①得:x≥-1,由②得:x﹤,所以原不等式組的解是:-1≤x﹤.【題目點撥】本題考查了解一元一次不等式組、數軸的應用,能正確解出不等式的解集且表示在數軸上是解答的關鍵.24、(1),理由見

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論