新疆伊寧生產(chǎn)建設(shè)兵團四師一中2022-2023學(xué)年高三學(xué)業(yè)水平考試試題數(shù)學(xué)試題_第1頁
新疆伊寧生產(chǎn)建設(shè)兵團四師一中2022-2023學(xué)年高三學(xué)業(yè)水平考試試題數(shù)學(xué)試題_第2頁
新疆伊寧生產(chǎn)建設(shè)兵團四師一中2022-2023學(xué)年高三學(xué)業(yè)水平考試試題數(shù)學(xué)試題_第3頁
新疆伊寧生產(chǎn)建設(shè)兵團四師一中2022-2023學(xué)年高三學(xué)業(yè)水平考試試題數(shù)學(xué)試題_第4頁
新疆伊寧生產(chǎn)建設(shè)兵團四師一中2022-2023學(xué)年高三學(xué)業(yè)水平考試試題數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

新疆伊寧生產(chǎn)建設(shè)兵團四師一中2022-2023學(xué)年高三學(xué)業(yè)水平考試試題數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形2.為比較甲、乙兩名高中學(xué)生的數(shù)學(xué)素養(yǎng),對課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進行指標(biāo)測驗(指標(biāo)值滿分為100分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達圖,則下面敘述不正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙 B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙 D.甲的六大素養(yǎng)中數(shù)學(xué)運算最強3.過雙曲線的左焦點作傾斜角為的直線,若與軸的交點坐標(biāo)為,則該雙曲線的標(biāo)準(zhǔn)方程可能為()A. B. C. D.4.設(shè)數(shù)列是等差數(shù)列,,.則這個數(shù)列的前7項和等于()A.12 B.21 C.24 D.365.某市政府決定派遣名干部(男女)分成兩個小組,到該市甲、乙兩個縣去檢查扶貧工作,若要求每組至少人,且女干部不能單獨成組,則不同的派遣方案共有()種A. B. C. D.6.已知函數(shù)滿足=1,則等于()A.- B. C.- D.7.在各項均為正數(shù)的等比數(shù)列中,若,則()A. B.6 C.4 D.58.函數(shù)f(x)=lnA. B. C. D.9.已知函數(shù)()的最小值為0,則()A. B. C. D.10.若雙曲線:()的一個焦點為,過點的直線與雙曲線交于、兩點,且的中點為,則的方程為()A. B. C. D.11.設(shè)函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,若函數(shù)在處取得極大值,則函數(shù)的圖象可能是()A. B.C. D.12.一個圓錐的底面和一個半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個圓錐軸截面底角的大小是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若非零向量,滿足,,,則______.14.設(shè)數(shù)列的前n項和為,且,若,則______________.15.現(xiàn)有5人要排成一排照相,其中甲與乙兩人不相鄰,且甲不站在兩端,則不同的排法有____種.(用數(shù)字作答)16.已知向量=(-4,3),=(6,m),且,則m=__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù),,(Ⅰ)求曲線在點(1,0)處的切線方程;(Ⅱ)求函數(shù)在區(qū)間上的取值范圍.18.(12分)已知函數(shù).(1)證明:函數(shù)在上存在唯一的零點;(2)若函數(shù)在區(qū)間上的最小值為1,求的值.19.(12分)如圖,在直三棱柱中,分別是中點,且,.求證:平面;求點到平面的距離.20.(12分)已知函數(shù)是自然對數(shù)的底數(shù).(1)若,討論的單調(diào)性;(2)若有兩個極值點,求的取值范圍,并證明:.21.(12分)已知不等式對于任意的恒成立.(1)求實數(shù)m的取值范圍;(2)若m的最大值為M,且正實數(shù)a,b,c滿足.求證.22.(10分)已知函數(shù)(為實常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點:平面的基本性質(zhì)及推論.2、D【解析】

根據(jù)所給的雷達圖逐個選項分析即可.【詳解】對于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學(xué)建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng),故B正確;對于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對于D,甲的六大素養(yǎng)中數(shù)學(xué)運算為80分,不是最強的,故D錯誤;故選:D【點睛】本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計算,考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.3、A【解析】

直線的方程為,令,得,得到a,b的關(guān)系,結(jié)合選項求解即可【詳解】直線的方程為,令,得.因為,所以,只有選項滿足條件.故選:A【點睛】本題考查直線與雙曲線的位置關(guān)系以及雙曲線的標(biāo)準(zhǔn)方程,考查運算求解能力.4、B【解析】

根據(jù)等差數(shù)列的性質(zhì)可得,由等差數(shù)列求和公式可得結(jié)果.【詳解】因為數(shù)列是等差數(shù)列,,所以,即,又,所以,,故故選:B【點睛】本題主要考查了等差數(shù)列的通項公式,性質(zhì),等差數(shù)列的和,屬于中檔題.5、C【解析】

在所有兩組至少都是人的分組中減去名女干部單獨成一組的情況,再將這兩組分配,利用分步乘法計數(shù)原理可得出結(jié)果.【詳解】兩組至少都是人,則分組中兩組的人數(shù)分別為、或、,

又因為名女干部不能單獨成一組,則不同的派遣方案種數(shù)為.故選:C.【點睛】本題考查排列組合的綜合問題,涉及分組分配問題,考查計算能力,屬于中等題.6、C【解析】

設(shè)的最小正周期為,可得,則,再根據(jù)得,又,則可求出,進而可得.【詳解】解:設(shè)的最小正周期為,因為,所以,所以,所以,又,所以當(dāng)時,,,因為,整理得,因為,,,則所以.故選:C.【點睛】本題考查三角形函數(shù)的周期性和對稱性,考查學(xué)生分析能力和計算能力,是一道難度較大的題目.7、D【解析】

由對數(shù)運算法則和等比數(shù)列的性質(zhì)計算.【詳解】由題意.故選:D.【點睛】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運算法則.掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.8、C【解析】因為fx=lnx2-4x+4x-23=9、C【解析】

設(shè),計算可得,再結(jié)合圖像即可求出答案.【詳解】設(shè),則,則,由于函數(shù)的最小值為0,作出函數(shù)的大致圖像,結(jié)合圖像,,得,所以.故選:C【點睛】本題主要考查了分段函數(shù)的圖像與性質(zhì),考查轉(zhuǎn)化思想,考查數(shù)形結(jié)合思想,屬于中檔題.10、D【解析】

求出直線的斜率和方程,代入雙曲線的方程,運用韋達定理和中點坐標(biāo)公式,結(jié)合焦點的坐標(biāo),可得的方程組,求得的值,即可得到答案.【詳解】由題意,直線的斜率為,可得直線的方程為,把直線的方程代入雙曲線,可得,設(shè),則,由的中點為,可得,解答,又由,即,解得,所以雙曲線的標(biāo)準(zhǔn)方程為.故選:D.【點睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程的求解,其中解答中屬于運用雙曲線的焦點和聯(lián)立方程組,合理利用根與系數(shù)的關(guān)系和中點坐標(biāo)公式是解答的關(guān)鍵,著重考查了推理與運算能力.11、B【解析】

由題意首先確定導(dǎo)函數(shù)的符號,然后結(jié)合題意確定函數(shù)在區(qū)間和處函數(shù)的特征即可確定函數(shù)圖像.【詳解】函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,且函數(shù)在處取得極大值,當(dāng)時,;當(dāng)時,;當(dāng)時,.時,,時,,當(dāng)或時,;當(dāng)時,.故選:【點睛】根據(jù)函數(shù)取得極大值,判斷導(dǎo)函數(shù)在極值點附近左側(cè)為正,右側(cè)為負(fù),由正負(fù)情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.12、D【解析】

設(shè)圓錐的母線長為l,底面半徑為R,再表達圓錐表面積與球的表面積公式,進而求得即可得圓錐軸截面底角的大小.【詳解】設(shè)圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

根據(jù)向量的模長公式以及數(shù)量積公式,得出,解方程即可得出答案.【詳解】,即解得或(舍)故答案為:【點睛】本題主要考查了向量的數(shù)量積公式以及模長公式的應(yīng)用,屬于中檔題.14、9【解析】

用換中的n,得,作差可得,從而數(shù)列是等比數(shù)列,再由即可得到答案.【詳解】由,得,兩式相減,得,即;又,解得,所以數(shù)列為首項為-3、公比為3的等比數(shù)列,所以.故答案為:9.【點睛】本題考查已知與的關(guān)系求數(shù)列通項的問題,要注意n的范圍,考查學(xué)生運算求解能力,是一道中檔題.15、36【解析】

先優(yōu)先考慮甲、乙兩人不相鄰的排法,在此條件下,計算甲不排在兩端的排法,最后相減即可得到結(jié)果.【詳解】由題意得5人排成一排,甲、乙兩人不相鄰,有種排法,其中甲排在兩端,有種排法,則6人排成一排,甲、乙兩人不相鄰,且甲不排在兩端,共有(種)排法.所以本題答案為36.【點睛】排列、組合問題由于其思想方法獨特,計算量龐大,對結(jié)果的檢驗困難,所以在解決這類問題時就要遵循一定的解題原則,如特殊元素、位置優(yōu)先原則、先取后排原則、先分組后分配原則、正難則反原則等,只有這樣我們才能有明確的解題方向.同時解答組合問題時必須心思細膩、考慮周全,這樣才能做到不重不漏,正確解題.16、8.【解析】

利用轉(zhuǎn)化得到加以計算,得到.【詳解】向量則.【點睛】本題考查平面向量的坐標(biāo)運算、平面向量的數(shù)量積、平面向量的垂直以及轉(zhuǎn)化與化歸思想的應(yīng)用.屬于容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】分析:(1)先斷定在曲線上,從而需要求,令,求得結(jié)果,注意復(fù)合函數(shù)求導(dǎo)法則,接著應(yīng)用點斜式寫出直線的方程;(2)先將函數(shù)解析式求出,之后借助于導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得函數(shù)在相應(yīng)區(qū)間上的最值.詳解:(Ⅰ)當(dāng),.,當(dāng),,所以切線方程為.(Ⅱ),,因為,所以.令,,則在單調(diào)遞減,因為,所以在上增,在單調(diào)遞增.,,因為,所以在區(qū)間上的值域為.點睛:該題考查的是有關(guān)應(yīng)用導(dǎo)數(shù)研究函數(shù)的問題,涉及到的知識點有導(dǎo)數(shù)的幾何意義,曲線在某個點處的切線方程的求法,復(fù)合函數(shù)求導(dǎo),函數(shù)在給定區(qū)間上的最值等,在解題的過程中,需要對公式的正確使用.18、(1)證明見解析;(2)【解析】

(1)求解出導(dǎo)函數(shù),分析導(dǎo)函數(shù)的單調(diào)性,再結(jié)合零點的存在性定理說明在上存在唯一的零點即可;(2)根據(jù)導(dǎo)函數(shù)零點,判斷出的單調(diào)性,從而可確定,利用以及的單調(diào)性,可確定出之間的關(guān)系,從而的值可求.【詳解】(1)證明:∵,∴.∵在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,∴函數(shù)在上單調(diào)遞增.又,令,,則在上單調(diào)遞減,,故.令,則所以函數(shù)在上存在唯一的零點.(2)解:由(1)可知存在唯一的,使得,即(*).函數(shù)在上單調(diào)遞增.∴當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增.∴.由(*)式得.∴,顯然是方程的解.又∵是單調(diào)遞減函數(shù),方程有且僅有唯一的解,把代入(*)式,得,∴,即所求實數(shù)的值為.【點睛】本題考查函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用,其中涉及到判斷函數(shù)在給定區(qū)間上的零點個數(shù)以及根據(jù)函數(shù)的最值求解參數(shù),難度較難.(1)判斷函數(shù)的零點個數(shù)時,可結(jié)合函數(shù)的單調(diào)性以及零點的存在性定理進行判斷;(2)函數(shù)的“隱零點”問題,可通過“設(shè)而不求”的思想進行分析.19、(1)詳見解析;(2).【解析】

(1)利用線面垂直的判定定理和性質(zhì)定理即可證明;(2)取中點為,則,證得平面,利用等體積法求解即可.【詳解】(1)因為,,,是的中點,,為直三棱柱,所以平面,因為為中點,所以平面,,又,平面(2),又分別是中點,.由(1)知,,又平面,取中點為,連接如圖,則,平面,設(shè)點到平面的距離為,由,得,即,解得,點到平面的距離為.【點睛】本題考查線面垂直的判定定理和性質(zhì)定理、等體積法求點到面的距離;考查邏輯推理能力和運算求解能力;熟練掌握線面垂直的判定定理和性質(zhì)定理是求解本題的關(guān)鍵;屬于中檔題.20、(1)減區(qū)間是,增區(qū)間是;(2),證明見解析.【解析】

(1)當(dāng)時,求得函數(shù)的導(dǎo)函數(shù)以及二階導(dǎo)函數(shù),由此求得的單調(diào)區(qū)間.(2)令求得,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間、極值和最值,結(jié)合有兩個極值點,求得的取值范圍.將代入列方程組,由證得.【詳解】(1),,又,所以在單增,從而當(dāng)時,遞減,當(dāng)時,遞增.(2).令,令,則故在遞增,在遞減,所以.注意到當(dāng)時,所以當(dāng)時,有一個極值點,當(dāng)時,有兩個極值點,當(dāng)時,沒有極值點,綜上因為是的兩個極值點,所以不妨設(shè),得,因為在遞減,且,所以又所以【點睛】本小題主要考查利用導(dǎo)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論