2023-2024學(xué)年山西省忻州巿第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第1頁
2023-2024學(xué)年山西省忻州巿第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第2頁
2023-2024學(xué)年山西省忻州巿第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第3頁
2023-2024學(xué)年山西省忻州巿第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第4頁
2023-2024學(xué)年山西省忻州巿第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年山西省忻州巿第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.直線與直線的位置關(guān)系是()A.相交但不垂直 B.平行C.重合 D.垂直2.已知關(guān)于x的不等式的解集為空集,則的最小值為()A. B.2C. D.43.在等差數(shù)列中,,則()A.6 B.3C.2 D.14.某公司門前有一排9個(gè)車位的停車場,從左往右數(shù)第三個(gè),第七個(gè)車位分別停著A車和B車,同時(shí)進(jìn)來C,D兩車.在C,D不相鄰的情況下,C和D至少有一輛與A和B車相鄰的概率是()A. B.C. D.5.復(fù)數(shù)的共軛復(fù)數(shù)的虛部為()A. B.C. D.6.已知1與5的等差中項(xiàng)是,又1,,,8成等比數(shù)列,公比為,則的值為()A.5 B.4C.3 D.67.設(shè)函數(shù)在R上可導(dǎo),其導(dǎo)函數(shù)為,且函數(shù)的圖像如題(8)圖所示,則下列結(jié)論中一定成立的是A.函數(shù)有極大值和極小值B.函數(shù)有極大值和極小值C.函數(shù)有極大值和極小值D.函數(shù)有極大值和極小值8.若定義在R上的函數(shù)滿足,則不等式的解集為()A. B.C. D.9.在空間直角坐標(biāo)系中,,,若∥,則x的值為()A.3 B.6C.5 D.410.已知函數(shù),則()A.函數(shù)的極大值為,無極小值 B.函數(shù)的極小值為,無極大值C.函數(shù)的極大值為0,無極小值 D.函數(shù)的極小值為0,無極大值11.直線被橢圓截得的弦長是A. B.C. D.12.如圖,把橢圓的長軸分成6等份,過每個(gè)分點(diǎn)作x軸的垂線交橢圓的上半部分于點(diǎn),F(xiàn)是橢圓C的右焦點(diǎn),則()A.20 B.C.36 D.30二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若在上是增函數(shù),則實(shí)數(shù)的取值范圍是________14.如圖是一個(gè)邊長為2的正方體的平面展開圖,在這個(gè)正方體中,則下列說法中正確的序號(hào)是___________.①直線與直線垂直;②直線與直線相交;③直線與直線平行;④直線與直線異面;15.過點(diǎn)且與直線垂直的直線方程為______16.函數(shù)的圖象在點(diǎn)處的切線方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,幾何體是圓柱的一部分,它是由矩形(及其內(nèi)部)以邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)得到的封閉圖形.(1)設(shè),,求這個(gè)幾何體的表面積;(2)設(shè)G是弧DF的中點(diǎn),設(shè)P是弧CE上的一點(diǎn),且.求異面直線AG與BP所成角的大小.18.(12分)在平面直角坐標(biāo)系中,已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合(1)求橢圓的離心率;(2)求拋物線的方程;(3)設(shè)是拋物線上一點(diǎn),且,求點(diǎn)的坐標(biāo)19.(12分)如圖,在直三棱柱中,,,,為的中點(diǎn),點(diǎn),分別在棱,上,,.(1)求點(diǎn)到直線的距離(2)求平面與平面夾角的余弦值.20.(12分)如圖,四棱錐中,底面ABCD是邊長為2的菱形,,,且,E為PD的中點(diǎn)(1)求證:;(2)求二面角的大?。唬?)在側(cè)棱PC上是否存在點(diǎn)F,使得點(diǎn)F到平面AEC的距離為?若存在,求出的值;若不存在,請(qǐng)說明理由21.(12分)已知命題p:“,”為假命題,命題q:“實(shí)數(shù)滿足”.若是真命題,是假命題,求的取值范圍22.(10分)已知?jiǎng)又本€l:(m+3)x-(m+2)y+m=0與圓C:(x-3)2+(y-4)2=9(1)求證:無論m為何值,直線l與圓C總相交(2)m為何值時(shí),直線l被圓C所截得的弦長最???請(qǐng)求出該最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】把直線化簡后即可判斷.【詳解】直線可化為,所以直線與直線的位置關(guān)系是重合.故選:C2、D【解析】根據(jù)一元二次不等式的解集的情況得出二次項(xiàng)系數(shù)大于零,根的判別式小于零,可得出,再將化為,由和均值不等式可求得最小值.【詳解】由題意可得:,,可以得到,而,可以令,則有,當(dāng)且僅當(dāng)取等號(hào),所以的最小值為4.故答案為:4.【點(diǎn)睛】本題主要考查均值不等式,關(guān)鍵在于由一元二次不等式的解集的情況得出的關(guān)系,再將所求的式子運(yùn)用不等式的性質(zhì)降低元的個(gè)數(shù),運(yùn)用均值不等式,是中檔題.3、B【解析】根據(jù)等差數(shù)列下標(biāo)性質(zhì)進(jìn)行求解即可.【詳解】因?yàn)槭堑炔顢?shù)列,所以,故選:B4、B【解析】先求出基本事件總數(shù),和至少有一輛與和車相鄰的對(duì)立事件是和都不與和車相鄰,由此能求出和至少有一輛與和車相鄰的概率【詳解】解:某公司門前有一排9個(gè)車位的停車場,從左往右數(shù)第三個(gè),第七個(gè)車位分別停著車和車,同時(shí)進(jìn)來,兩車,在,不相鄰的條件下,基本事件總數(shù),和至少有一輛與和車相鄰的對(duì)立事件是和都不與和車相鄰,和至少有一輛與和車相鄰的概率:故選:B5、B【解析】先根據(jù)復(fù)數(shù)除法與加法運(yùn)算求解得,再求共軛復(fù)數(shù)及其虛部.【詳解】解:,所以其共軛復(fù)數(shù)為,其虛部為故選:B6、A【解析】由等差中項(xiàng)的概念列式求得值,再由等比數(shù)列的通項(xiàng)公式列式求解,則答案可求.【詳解】由題意,,則;又1,,,8成等比數(shù)列,公比為,,即,,故選:.7、D【解析】則函數(shù)增;則函數(shù)減;則函數(shù)減;則函數(shù)增;選D.【考點(diǎn)定位】判斷函數(shù)的單調(diào)性一般利用導(dǎo)函數(shù)的符號(hào),當(dāng)導(dǎo)函數(shù)大于0則函數(shù)遞增,當(dāng)導(dǎo)函數(shù)小于0則函數(shù)遞減8、B【解析】構(gòu)造函數(shù),根據(jù)題意,求得其單調(diào)性,利用函數(shù)單調(diào)性解不等式即可.【詳解】構(gòu)造函數(shù),則,故在上單調(diào)遞減;又,故可得,則,即,解得,故不等式解集為.故選:B.【點(diǎn)睛】本題考察利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,以及利用函數(shù)單調(diào)性求解不等式,解決本題的關(guān)鍵是根據(jù)題意構(gòu)造函數(shù),屬中檔題.9、D【解析】依題意可得,即可得到方程組,解得即可;【詳解】解:依題意,即,所以,解得故選:D10、A【解析】利用導(dǎo)數(shù)來求得的極值.【詳解】的定義域?yàn)椋?,在遞增;在遞減,所以的極大值為,沒有極小值.故選:A11、A【解析】直線y=x+1代入,得出關(guān)于x的二次方程,求出交點(diǎn)坐標(biāo),即可求出弦長【詳解】將直線y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直線y=x+1被橢圓x2+4y2=8截得的弦長為故選A【點(diǎn)睛】本題查直線與橢圓的位置關(guān)系,考查弦長的計(jì)算,屬于基礎(chǔ)題12、D【解析】由橢圓的對(duì)稱性可知,,代入計(jì)算可得答案.【詳解】設(shè)橢圓左焦點(diǎn)為,連接由橢圓的對(duì)稱性可知,,所以.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)函數(shù)在上是增函數(shù),分段函數(shù)在整個(gè)定義域內(nèi)單調(diào),則在每個(gè)函數(shù)內(nèi)單調(diào),注意銜接點(diǎn)的函數(shù)值.【詳解】解:因?yàn)楹瘮?shù)在上是增函數(shù),所以在區(qū)間上是增函數(shù)且在區(qū)間上也是增函數(shù),對(duì)于函數(shù)在上是增函數(shù),則;①對(duì)于函數(shù),(1)當(dāng)時(shí),,外函數(shù)為定義域內(nèi)的減函數(shù),內(nèi)函數(shù)在上是增函數(shù),根據(jù)復(fù)合函數(shù)“同增異減”可得時(shí)函數(shù)在區(qū)間上是減函數(shù),不符合題意,故舍去,(2)當(dāng)時(shí),外函數(shù)為定義域內(nèi)的增函數(shù),要使函數(shù)在區(qū)間上是增函數(shù),則內(nèi)函數(shù)在上也是增函數(shù),且對(duì)數(shù)函數(shù)真數(shù)大于0,即在上也要恒成立,所以,又,所以,②又在上是增函數(shù)則在銜接點(diǎn)處函數(shù)值應(yīng)滿足:,化簡得,③由①②③得,,所以實(shí)數(shù)的取值范圍是.故答案為:.【點(diǎn)睛】方法點(diǎn)睛:利用單調(diào)性求參數(shù)方法如下:(1)依據(jù)函數(shù)的圖象或單調(diào)性定義,確定函數(shù)的單調(diào)區(qū)間,與已知單調(diào)區(qū)間比較;(2)需注意若函數(shù)在區(qū)間上是單調(diào)的,則該函數(shù)在此區(qū)間的任意子集上也是單調(diào)的;(3)分段函數(shù)的單調(diào)性,除注意各段的單調(diào)性外,還要注意銜接點(diǎn)的取值14、①④【解析】畫出正方體,,,故,①正確,根據(jù)相交推出矛盾得到②錯(cuò)誤,根據(jù),與相交得到③錯(cuò)誤,排除共面的情況得到④正確,得到答案.【詳解】如圖所示的正方體中,,,故,①正確;若直線與直線相交,則四點(diǎn)共面,即在平面內(nèi),不成立,②錯(cuò)誤;,與相交,故直線與直線不平行,③錯(cuò)誤;,與不平行,故與不平行,若與相交,則四點(diǎn)共面,在平面內(nèi),不成立,故直線與直線異面,④正確;故答案為:①④.15、【解析】先設(shè)出與直線垂直的直線方程,再把代入進(jìn)行求解.【詳解】設(shè)與直線垂直的直線為,將代入得:,解得:,故所求直線方程為.故答案為:16、【解析】求導(dǎo)得到,計(jì)算,根據(jù)點(diǎn)斜式可得到切線方程.【詳解】因此,則,故,又點(diǎn)在函數(shù)的圖象上,故切線方程為:,即.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)將幾何體的表面積分成上下兩個(gè)扇形、兩個(gè)矩形和一個(gè)圓柱形側(cè)面的一部分組成,分別求出后相加即可;(2)先根據(jù)條件得到面,通過平移將異面直線轉(zhuǎn)化為同一個(gè)平面內(nèi)的直線夾角即可【小問1詳解】上下兩個(gè)扇形的面積之和為:兩個(gè)矩形面積之和為:4側(cè)面圓弧段的面積為:故這個(gè)幾何體的表面積為:【小問2詳解】如下圖,將直線平移到下底面上為由,且,,可得:面則而G是弧DF的中點(diǎn),則由于上下兩個(gè)平面平行且全等,則直線與直線的夾角等于直線與直線的夾角,即為所求,則則直線與直線的夾角為18、(1);(2);(3)【解析】(1)由橢圓方程即可求出離心率.(2)求出橢圓的焦點(diǎn)即為拋物線的焦點(diǎn),即可求出答案.(3)由拋物線定義可求出點(diǎn)的坐標(biāo)【小問1詳解】由題意可知,.【小問2詳解】橢圓的右焦點(diǎn)為,故拋物線的焦點(diǎn)為.拋物線的方程為.【小問3詳解】設(shè)的坐標(biāo)為,,解得,.故的坐標(biāo)為.19、(1);(2).【解析】(1)由直棱柱的性質(zhì)及勾股定理求出△各邊長,應(yīng)用余弦定理求,進(jìn)而可得其正弦值,再求邊上的高即可.(2)以為原點(diǎn),,,所在直線為x軸、y軸、z軸,建立空間直角坐標(biāo)系,然后求出兩個(gè)平面的法向量,然后可算出答案.【小問1詳解】如圖,連接,由題設(shè),,,,由直棱柱性質(zhì)及,在中,在中,在中,在中,所以在△中,,則,所以到直線的距離.【小問2詳解】以為原點(diǎn),,,所在直線為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系易知:,,,則,因?yàn)槠矫?,所以平面的一個(gè)法向量為設(shè)平面的法向量為,則,取,則,所以,即平面與平面的夾角的余弦值為20、(1)證明見解析(2)(3)存在;【解析】(1)作出輔助線,證明線面垂直,進(jìn)而證明線線垂直;(2)建立空間直角坐標(biāo)系,用空間向量求解二面角;(3)設(shè)出F點(diǎn)坐標(biāo),用空間向量的點(diǎn)到平面距離公式進(jìn)行求解.【小問1詳解】證明:連接BD,設(shè)BD與AC交于點(diǎn)O,連接PO.因?yàn)?,所以四棱錐中,底面ABCD是邊長為2的菱形,則又,所以平面PBD,因?yàn)槠矫鍼BD,所以【小問2詳解】因?yàn)?,所以,所以由?)知平面ABCD,以O(shè)為原點(diǎn),,,的方向?yàn)閤軸,y軸,z軸正方向,建立空間直角坐標(biāo)系,則,,,,,,所以,,,設(shè)平面AEC的法向量,則,即,令,則平面ACD的法向量,,所以二面角為;【小問3詳解】存在點(diǎn)F到平面AEC的距離為,理由如下:由(2)得,,設(shè),則,所以點(diǎn)F到平面AEC的距離,解得,,所以21、或【解析】先假設(shè)命題、為真,分別求得實(shí)數(shù)的取值范圍,再由命題、具體的真假,取實(shí)數(shù)的取值范圍或其補(bǔ)集,最終確定實(shí)數(shù)的取值范圍.【詳解】若命題p為真,則“,”為假命題則,恒成立∴恒成立,即∴,∴.若命題q為真,則,即∴∴∵是真命題,是假命題∴命題、必為一真一假.①當(dāng)p真q假時(shí),∴;②當(dāng)p假q真時(shí),∴.綜上所述:a的取值范圍是或.22、(1)詳見解析(2)m為-時(shí),截得的弦長最小,最小值為2【解析】(1)將直線l變形,可知直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論