2024屆山東省禹城市綜合高中高二數(shù)學第一學期期末達標檢測試題含解析_第1頁
2024屆山東省禹城市綜合高中高二數(shù)學第一學期期末達標檢測試題含解析_第2頁
2024屆山東省禹城市綜合高中高二數(shù)學第一學期期末達標檢測試題含解析_第3頁
2024屆山東省禹城市綜合高中高二數(shù)學第一學期期末達標檢測試題含解析_第4頁
2024屆山東省禹城市綜合高中高二數(shù)學第一學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆山東省禹城市綜合高中高二數(shù)學第一學期期末達標檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過雙曲線的左焦點作x軸的垂線交曲線C于點P,為右焦點,若,則雙曲線的離心率為()A. B.C. D.2.阿波羅尼斯是古希臘著名數(shù)學家,與歐幾里得、阿基米德并稱為亞歷山大時期數(shù)學三巨匠,他對圓錐曲線有深刻而系統(tǒng)的研究,主要研究成果集中在他的代表作《圓錐曲線》一書,阿波羅尼斯圓就是他的研究成果之一.指的是:已知動點與兩定點的距離之比,那么點的軌跡就是阿波羅尼斯圓.已知動點的軌跡是阿波羅尼斯圓,其方程為,其中,定點為軸上一點,定點的坐標為,若點,則的最小值為()A. B.C. D.3.隨機抽取甲乙兩位同學連續(xù)9次成績(單位:分),得到如圖所示的成績莖葉圖,關于這9次成績,則下列說法正確的是()A.甲成績的中位數(shù)為33 B.乙成績的極差為40C.甲乙兩人成績的眾數(shù)相等 D.甲成績的平均數(shù)低于乙成績的平均數(shù)4.大數(shù)學家阿基米德的墓碑上刻有他最引以為豪的數(shù)學發(fā)現(xiàn)的象征圖——球及其外切圓柱(如圖).以此紀念阿基米德發(fā)現(xiàn)球的體積和表面積,則球的體積和表面積均為其外切圓柱體積和表面積的()A. B.C. D.5.已知點是雙曲線的左焦點,是雙曲線右支上一動點,過點作軸垂線并延長交雙曲線左支于點,當點向上移動時,的值()A.增大 B.減小C.不變 D.無法確定6.設為橢圓上一點,,為左、右焦點,且,則()A.為銳角三角形 B.為鈍角三角形C.為直角三角形 D.,,三點構不成三角形7.點到直線的距離是()A. B.C. D.8.已知直線經(jīng)過拋物線的焦點,且與該拋物線交于,兩點,若滿足,則直線的方程為()A. B.C. D.9.下列問題中是古典概型的是A.種下一粒楊樹種子,求其能長成大樹的概率B.擲一顆質地不均勻的骰子,求出現(xiàn)1點的概率C.在區(qū)間[1,4]上任取一數(shù),求這個數(shù)大于1.5概率D.同時擲兩枚質地均勻的骰子,求向上的點數(shù)之和是5的概率10.如圖,在棱長為1的正方體中,點B到直線的距離為()A. B.C. D.11.已知直線過點且與直線平行,則直線方程為()A. B.C. D.12.2021年6月17日9時22分,搭載神舟十二號載人飛船的長征二號F遙十二運載火箭,在酒泉衛(wèi)星發(fā)射中心點火發(fā)射.此后,神舟十二號載人飛船與火箭成功分離,進入預定軌道,并快速完成與“天和”核心艙的對接,聶海勝、劉伯明、湯洪波3名宇航員成為核心艙首批“入住人員”,并在軌駐留3個月,開展艙外維修維護,設備更換,科學應用載荷等一系列操作.已知神舟十二號飛船的運行軌道是以地心為焦點的橢圓,設地球半徑為R,其近地點與地面的距離大約是,遠地點與地面的距離大約是,則該運行軌道(橢圓)的離心率大約是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的一條漸近線被圓所截得的弦長為2,則該雙曲線的實軸長為______.14.已知橢圓的右焦點為,短軸的一個端點為,直線交橢圓于兩點.若,點到直線的距離不小于,則橢圓的離心率的取值范圍是______________15.空間四邊形中,,,,,,,則與所成角的余弦值等于___________16.過拋物線的焦點且斜率為的直線交拋物線于A,兩點,,則的值為__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知頂點,,動點分別在軸,軸上移動,延長至點,使得,且.(1)求動點的軌跡;(2)過點分別作直線交曲線于兩點,若直線的傾斜角互補,證明:直線的斜率為定值;(3)過點分別作直線交曲線于兩點,若,直線是否經(jīng)過定點?若是,求出該定點,若不是,說明理由.18.(12分)已知數(shù)列{an}滿足,(1)記,證明:數(shù)列{bn}為等比數(shù)列,并求數(shù)列{bn}的通項公式;(2)記數(shù)列{bn}前n項和為Tn,證明:19.(12分)已知拋物線的頂點在原點,焦點在軸上,且拋物線上有一點到焦點的距離為3,直線與拋物線交于,兩點,為坐標原點(1)求拋物線的方程;(2)求的面積.20.(12分)如圖,已知橢圓的焦點是圓與x軸的交點,橢圓C的長半軸長等于圓O的直徑(1)求橢圓C的方程;(2)F為橢圓C的右焦點,A為橢圓C的右頂點,點B在線段FA上,直線BD,BE與橢圓C的一個交點分別是D,E,直線BD與直線BE的傾斜角互補,直線BD與圓O相切,設直線BD的斜率為.當時,求k21.(12分)如圖,在直三棱柱中,,分別是棱的中點,點在線段上.(1)當直線與平面所成角最大時,求線段的長度;(2)是否存在這樣的點,使平面與平面所成的二面角的余弦值為,若存在,試確定點的位置,若不存在,說明理由.22.(10分)已知的展開式中二項式系數(shù)和為16(1)求展開式中二項式系數(shù)最大的項;(2)設展開式中的常數(shù)項為p,展開式中所有項系數(shù)的和為q,求

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題知是等腰直角三角形,,又根據(jù)通徑的結論知,結合可列出關于的二次齊次式,即可求解離心率.【詳解】由題知是等腰直角三角形,且,,又,,即,,,即,解得,,.故選:D.2、D【解析】設,,根據(jù)和求出a的值,由,兩點之間直線最短,可得的最小值為,根據(jù)坐標求出即可.【詳解】設,,所以,由,所以,因為且,所以,整理可得,又動點M的軌跡是,所以,解得,所以,又,所以,因為,所以的最小值,當M在位置或時等號成立.故選:D3、D【解析】按照莖葉圖所給的數(shù)據(jù)計算即可.【詳解】由莖葉圖可知,甲的成績?yōu)椋?1,22,23,24,32,32,33,41,52,其中位數(shù)為32,眾數(shù)為32,平均數(shù)為;乙的成績?yōu)椋?0,22,31,32,35,42,42,50,52,極差為52-10=42,眾數(shù)為42,平均數(shù)為;由以上數(shù)據(jù)可知,A錯誤,B錯誤,C錯誤,D正確;故選:D.4、C【解析】設球的半徑為,則圓柱的底面半徑為,高為,分別求出球的體積與表面積,圓柱的體積與表面積,從而得出答案.【詳解】設球的半徑為,則圓柱的底面半徑為,高為所以球的體積為,表面積為.圓柱的體積為:,所以其體積之比為:圓柱的側面積為:,圓柱的表面積為:所以其表面積之比為:故選:C5、C【解析】令雙曲線右焦點為,由對稱性可知,,結合雙曲線的定義即可得出結果.【詳解】令雙曲線右焦點為,由對稱性可知,,則,為常數(shù),故選:C.6、D【解析】根據(jù)橢圓方程求出,然后結合橢圓定義和已知條件求出并求出,進而判斷答案.【詳解】由題意可知,,由橢圓的定義可知,而,聯(lián)立方程解得,且,則6+2=8,即不構成三角形.故選:D.7、B【解析】直接使用點到直線距離公式代入即可.【詳解】由點到直線距離公式得故選:B8、C【解析】求出拋物線的焦點,設出直線方程,代入拋物線方程,運用韋達定理和向量坐標表示,解得,即可得出直線的方程.【詳解】解:拋物線的焦點,設直線為,則,整理得,則,.由可得,代入上式即可得,所以,整理得:.故選:C.【點睛】本題考查直線和拋物線的位置關系,主要考查韋達定理和向量共線的坐標表示,考查運算能力,屬于中檔題.9、D【解析】A、B兩項中的基本事件的發(fā)生不是等可能的;C項中基本事件的個數(shù)是無限多個;D項中基本事件的發(fā)生是等可能的,且是有限個.故選D【考點】古典概型的判斷10、A【解析】以為坐標原點,以為單位正交基底,建立空間直角坐標系,取,,利用向量法,根據(jù)公式即可求出答案.【詳解】以為坐標原點,以為單位正交基底,建立如圖所示的空間直角坐標系,則,,取,,則,,則點B到直線AC1的距離為.故選:A11、C【解析】由題意,直線的斜率為,利用點斜式即可得答案.【詳解】解:因為直線與直線平行,所以直線的斜率為,又直線過點,所以直線的方程為,即,故選:C.12、A【解析】以運行軌道長軸所在直線為x軸,地心F為右焦點建立平面直角坐標系,設橢圓方程為,根據(jù)題意列出方程組,解方程組即可.【詳解】以運行軌道長軸所在直線為x軸,地心F為右焦點建立平面直角坐標系,設橢圓方程為,其中,根據(jù)題意有,,所以,,所以橢圓的離心率故選:A二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】求得雙曲線的一條漸近線方程,求得圓心和半徑,運用點到直線的距離公式和弦長公式,可得a,b的關系,即可得到的值【詳解】一漸近線x+ay=0,被圓(x-2)2+y2=4所截弦長為2,所以圓心到直線距為,即,a=1.所以雙曲線的實軸長為2.故答案為:14、【解析】設左焦點為,連接,.則四邊形是平行四邊形,可得.設,由點M到直線l的距離不小于,即有,解得.再利用離心率計算公式即可得出范圍【詳解】設左焦點為,連接,.則四邊形是平行四邊形,故,所以,所以,設,則,故,從而,,,所以,即橢圓的離心率的取值范圍是【點睛】本題考查了橢圓的定義標準方程及其性質、點到直線的距離公式、不等式的性質,考查了推理能力與計算能力,屬于中檔題15、【解析】計算出的值,利用空間向量的數(shù)量積可得出的值,即可得解.【詳解】,,所以,,所以,.所以,與所成角的余弦值為.故答案為:.16、2【解析】求出直線的方程,與拋物線的方程聯(lián)立,利用根與系數(shù)的關系可,,由拋物線的定義可知,,,即可得到【詳解】解:拋物線的焦點,,準線方程為,設,,,,則直線的方程為,代入可得,,,由拋物線的定義可知,,,,解得故答案為:2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析;(3).【解析】(1)設點M,P,Q的坐標,將向量進行坐標化,整理即可得軌跡方程;(2)設點,,直線的傾斜角互補,則兩直線斜率互為相反數(shù),用斜率公式計算得到,即可計算kAB;(3)若,由兩直線斜率積為-1,可得到關于與的等量關系,寫出直線AB的方程,將等量關系代入直線方程整理可得直線AB經(jīng)過的定點【詳解】(1)設,,.由,得,即.因為,所以,所以.所以動點的軌跡為拋物線,其方程為.(2)證明:設點,,若直線的傾斜角互補,則兩直線斜率互為相反數(shù),又,,所以,,整理得,所以.(3)因為,所以,即,①直線的方程為:,整理得:,②將①代入②得,即,當時,即直線經(jīng)過定點.【點睛】本題考查直接法求軌跡方程,考查直線斜率為定值的求法和直線恒過定點問題.18、(1)證明見解析;bn=2n(2)證明見解析【解析】(1)由遞推關系式轉化為等比數(shù)列即可求解;(2)由(1)求出,再用裂項相消法求和后就可以證明不等式.【小問1詳解】由an+1=2an+1可得所以{bn}是以首項,公比為2的等比數(shù)列所以.【小問2詳解】易得于是所以因為,所以.19、(1);(2)【解析】(1)由題意可設拋物線的方程為y2=2px(p>0),運用拋物線的定義,可得23,解得p=2,進而得到拋物線的方程;(2)由題意,直線AB方程為y=x﹣1,與y2=4x消去y得:x2﹣6x+1=0.再用一元二次方程根與系數(shù)的關系和弦長公式,算出|AB|;利用點到直線的距離公式算出點O到直線AB的距離,即可求出△AOB的面積【詳解】(1)拋物線C的頂點在原點,焦點在x軸上,且過一點P(2,m),可設拋物線的方程為y2=2px(p>0),P(2,m)到焦點的距離為3,即有P到準線的距離為6,即23,解得p=2,即拋物線的標準方程為y2=4x;(2)聯(lián)立方程化簡,得x2﹣6x+1=0設交點為A(x1,y1),B(x2,y2)∴x1+x2=6,x1x2=1可得|AB||x1﹣x2|=8點O到直線l的距離d,所以△AOB的面積為S|AB|?d82【點睛】本題考查拋物線的方程的求法及拋物線定義的應用,考查待定系數(shù)法的運用,考查求焦點弦AB與原點構成的△AOB面積,屬于中檔題20、(1);(2)-1【解析】(1)由題設可得,求出參數(shù)b,即可寫出橢圓C的方程;(2)延長線段DB交橢圓C于點,根據(jù)對稱性設B,為,,聯(lián)立橢圓方程,應用韋達定理并結合已知條件可得,直線與圓相切可得,進而求參數(shù)t,即可求直線BD的斜率.【小問1詳解】因為圓與x軸的交點分別為,,所以橢圓C的焦點分別為,,∴,根據(jù)條件得,∴,故橢圓C的方程為【小問2詳解】延長線段DB交橢圓C于點,因直線BD與直線BE的傾斜角互補,根據(jù)對稱性得由條件可設B的坐標為,設D,的縱坐標分別為,,直線的方程為,由于,即,所以由得:∴,∴①,②,由①得:,代入②得,∴∵直線與圓相切,∴,即∴,解得,又,∴,故,即直線BD斜率【點睛】關鍵點點睛:將已知線段的長度關系轉化為D,的縱坐標的數(shù)量關系,設直線的含參方程,聯(lián)立橢圓方程及其與圓的相切求參數(shù)關系,進而求參數(shù)即可.21、(1)(2)存在,A1P=【解析】(1)作出線面角,因為對邊為定值,所以鄰邊最小時線面角最大;(2)建立空間直角坐標系,由向量法求二面角列方程可得.【小問1詳解】直線PN與平面A1B1C1所成的角即為直線PN與平面ABC所成角,過P作,即PN與面ABC所成的角,因為PH為定值,所以當NH最小時線面角最大,因為當P為中點時,,此時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論