版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
黑龍江省黑河市通北一中2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“,”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.在下列各圖中,每個(gè)圖的兩個(gè)變量具有相關(guān)關(guān)系的圖是()A.(1)(2) B.(1)(3)C.(2) D.(2)(3)3.橢圓的焦點(diǎn)坐標(biāo)為()A.和 B.和C.和 D.和4.已知橢圓與雙曲線有相同的焦點(diǎn)、,橢圓的離心率為,雙曲線的離心率為,點(diǎn)P為橢圓與雙曲線的交點(diǎn),且,則當(dāng)取最大值時(shí)的值為()A. B.C. D.5.如圖,在四面體中,,,,D為BC的中點(diǎn),E為AD的中點(diǎn),則可用向量,,表示為()A. B.C. D.6.已知,是球的球面上兩點(diǎn),,為該球面上的動(dòng)點(diǎn),若三棱錐體積的最大值為36,則球的表面積為()A. B.C. D.7.《周髀算經(jīng)》中有這樣一個(gè)問(wèn)題,從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣日影長(zhǎng)依次成等差數(shù)列,若冬至、大寒、雨水的日影長(zhǎng)的和為36.3尺,小寒、驚蟄、立夏的日影長(zhǎng)的和為18.3尺,則冬至的日影長(zhǎng)為()A4尺 B.8.5尺C.16.1尺 D.18.1尺8.設(shè)函數(shù)在R上可導(dǎo),其導(dǎo)函數(shù)為,且函數(shù)的圖像如題(8)圖所示,則下列結(jié)論中一定成立的是A.函數(shù)有極大值和極小值B.函數(shù)有極大值和極小值C.函數(shù)有極大值和極小值D.函數(shù)有極大值和極小值9.設(shè)命題,則為()A. B.C. D.10.在直角坐標(biāo)系中,直線的傾斜角是A.30° B.60°C.120° D.150°11.若雙曲線的焦距為,則雙曲線的漸近線方程為()A. B.C. D.12.定義在上的函數(shù)的導(dǎo)函數(shù)為,若對(duì)任意實(shí)數(shù),有,且為奇函數(shù),則不等式解集是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列都是等差數(shù)列,公差分別為,數(shù)列滿足,則數(shù)列的公差為_(kāi)_________14.若,,三點(diǎn)共線,則m的值為_(kāi)__________.15.已知一組樣本數(shù)據(jù)5、6、a、6、8的極差為5,若,則其方差為_(kāi)_______.16.已知數(shù)列{}的前n項(xiàng)和為,則該數(shù)列的通項(xiàng)公式__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列和滿足,(1)若,求的通項(xiàng)公式;(2)若,,證明為等差數(shù)列,并求和的通項(xiàng)公式18.(12分)已知命題p:,命題q:.(1)若命題p為真命題,求實(shí)數(shù)x的取值范圍.(2)若p是q的充分條件,求實(shí)數(shù)m的取值范圍;19.(12分)已知橢圓的離心率為,以橢圓兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)為頂點(diǎn)構(gòu)成的三角形的面積為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)作直線l與橢圓C相切于點(diǎn)Q,且直線l斜率大于0,過(guò)線段PQ的中點(diǎn)R作直線交橢圓于A,B兩點(diǎn)(點(diǎn)A,B不在y軸上),連結(jié)PA,PB,分別與橢圓交于點(diǎn)M,N,試判斷直線MN的斜率是否為定值;若是,請(qǐng)求出該定值20.(12分)已知橢圓C:過(guò)兩點(diǎn)(1)求C的方程;(2)定點(diǎn)M坐標(biāo)為,過(guò)C右焦點(diǎn)的直線與C交于P,Q兩點(diǎn),判斷是否為定值?若是,求出該定值,若不是,請(qǐng)說(shuō)明理由21.(12分)在正方體中,E,F(xiàn)分別是,的中點(diǎn)(1)求證:∥平面;(2)求平面與平面EDC所成的二面角的正弦值22.(10分)已知函數(shù)(m≥0).(1)當(dāng)m=0時(shí),求曲線在點(diǎn)(1,f(1))處的切線方程;(2)若函數(shù)的最小值為,求實(shí)數(shù)m的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由正切函數(shù)性質(zhì),應(yīng)用定義法判斷條件間充分、必要關(guān)系.【詳解】當(dāng),,則,當(dāng)時(shí),,.∴“,”是“”的充分不必要條件.故選:A2、D【解析】根據(jù)圖形可得(1)具有函數(shù)關(guān)系;(2)(3)的散點(diǎn)分布在一條直線或曲線附近,具有相關(guān)關(guān)系;(4)的散點(diǎn)雜亂無(wú)章,不具有相關(guān)關(guān)系.【詳解】對(duì)(1),所有的點(diǎn)都在曲線上,故具有函數(shù)關(guān)系;對(duì)(2),所有的散點(diǎn)分布在一條直線附近,具有相關(guān)關(guān)系;對(duì)(3),所有的散點(diǎn)分布在一條曲線附近,具有相關(guān)關(guān)系;對(duì)(4),所有的散點(diǎn)雜亂無(wú)章,不具有相關(guān)關(guān)系.故選:D.3、D【解析】本題是焦點(diǎn)在x軸的橢圓,求出c,即可求得焦點(diǎn)坐標(biāo).【詳解】,可得焦點(diǎn)坐標(biāo)為和.故選:D4、D【解析】由橢圓的定義及雙曲線的定義結(jié)合余弦定理可得,,的關(guān)系,由此可得,再利用重要不等式求最值,并求此時(shí)的的值.【詳解】設(shè)為第一象限的交點(diǎn),、,則、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,當(dāng)且僅當(dāng),即,時(shí)等號(hào)成立,此時(shí)故選:D5、B【解析】利用空間向量的基本定理,用,,表示向量【詳解】因?yàn)槭堑闹悬c(diǎn),是的中點(diǎn),,故選:B6、C【解析】當(dāng)平面時(shí),三棱錐體積最大,根據(jù)棱長(zhǎng)與球半徑關(guān)系即可求出球半徑,從而求出表面積.【詳解】當(dāng)平面時(shí),三棱錐體積最大.又,則三棱錐體積,解得;故表面積.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查三棱錐與球的組合體的綜合問(wèn)題,本題的關(guān)鍵是判斷當(dāng)平面時(shí),三棱錐體積最大.7、C【解析】設(shè)等差數(shù)列,用基本量代換列方程組,即可求解.【詳解】由題意,從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣的日影長(zhǎng)依次成等差數(shù)列,記為數(shù)列,公差為d,則有,即,解得:,即冬至的日影長(zhǎng)為16.1尺.故選:C8、D【解析】則函數(shù)增;則函數(shù)減;則函數(shù)減;則函數(shù)增;選D.【考點(diǎn)定位】判斷函數(shù)的單調(diào)性一般利用導(dǎo)函數(shù)的符號(hào),當(dāng)導(dǎo)函數(shù)大于0則函數(shù)遞增,當(dāng)導(dǎo)函數(shù)小于0則函數(shù)遞減9、D【解析】利用含有一個(gè)量詞的命題的否定的定義判斷.【詳解】因?yàn)槊}是全稱量詞命題,所以其否定是存在量詞命題,即,故選:D10、D【解析】根據(jù)直線方程得到直線的斜率后可得直線的傾斜角.【詳解】設(shè)直線的傾斜角為,則,因,故,故選D.【點(diǎn)睛】直線的斜率與傾斜角的關(guān)系是:,當(dāng)時(shí),直線的斜率不存在,注意傾斜角的范圍.11、A【解析】由焦距為可得,又,進(jìn)而可得,最后根據(jù)焦點(diǎn)在軸上的雙曲線的漸近線方程為即可求解.【詳解】解:因?yàn)殡p曲線的焦距為,所以,所以,解得,所以,所以雙曲線的漸近線方程為,即,故選:A.12、B【解析】設(shè).由,得,故函數(shù)在上單調(diào)遞減.由為奇函數(shù),所以.不等式等價(jià)于,即,結(jié)合函數(shù)的單調(diào)性可得,從而不等式的解集為,故答案為B.考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.【方法點(diǎn)晴】本題考查了導(dǎo)數(shù)的綜合應(yīng)用及函數(shù)的性質(zhì)的應(yīng)用,構(gòu)造函數(shù)的思想,閱讀分析問(wèn)題的能力,屬于中檔題.常見(jiàn)的構(gòu)造思想是使含有導(dǎo)數(shù)的不等式一邊變?yōu)?,即得,?dāng)是形如時(shí)構(gòu)造;當(dāng)是時(shí)構(gòu)造,在本題中令,(),從而求導(dǎo),從而可判斷單調(diào)遞減,從而可得到不等式的解集二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】利用等差數(shù)列的定義即得.【詳解】∵數(shù)列都是等差數(shù)列,公差分別為,數(shù)列滿足,∴.故答案為:.14、【解析】根據(jù)三點(diǎn)共線與斜率的關(guān)系即可得出【詳解】由,,三點(diǎn)共線,可知所在的直線與所在的直線平行,又,由已知可得,解得故答案為:15、2【解析】根據(jù)極差的定義可求得a的值,再根據(jù)方差公式可求得結(jié)果.【詳解】因?yàn)樵摻M數(shù)據(jù)的極差為5,,所以,解得.因?yàn)椋栽摻M數(shù)據(jù)的方差為故答案為:.16、2n+1【解析】由計(jì)算,再計(jì)算可得結(jié)論【詳解】由題意時(shí),,又適合上式,所以故答案為:【點(diǎn)睛】本題考查由求通項(xiàng)公式,解題根據(jù)是,但要注意此式不含,三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析,,【解析】(1)代入可得,變形得構(gòu)造等比數(shù)列求的通項(xiàng)公式;(2)先由已知得,先分別求出,的通項(xiàng)公式,然后合并可得的通項(xiàng)公式,進(jìn)而可得的通項(xiàng)公式【小問(wèn)1詳解】當(dāng),時(shí),,所以,即,整理得,所以是以為首項(xiàng),為公比的等比數(shù)列故,即【小問(wèn)2詳解】當(dāng)時(shí),由,,得,所以因?yàn)椋?,則是以為首項(xiàng),2為公差的等差數(shù)列,,;是以為首項(xiàng),2為公差的等差數(shù)列,,綜上所述,所以,,故是以2為首項(xiàng),1為公差的等差數(shù)列當(dāng)時(shí),,且滿足,所以18、(1);(2).【解析】(1)由一元二次不等式的解法求得的范圍;(2)由p是q的充分條件,轉(zhuǎn)化為集合的包含關(guān)系,從而可求實(shí)數(shù)m的取值范圍.【詳解】(1)由p:為真,解得.(2)q:,若p是q的充分條件,則是的子集所以.即.19、(1)(2)是,【解析】(1)根據(jù)離心率以及橢圓兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)為頂點(diǎn)構(gòu)成的三角形的面積列出等式即可求解;(2)設(shè)出相關(guān)直線與相關(guān)點(diǎn)的坐標(biāo),直線與橢圓聯(lián)立,點(diǎn)的坐標(biāo)配合斜率公式化簡(jiǎn),再運(yùn)用韋達(dá)理化簡(jiǎn)可證明.【小問(wèn)1詳解】由題意得,解得,則橢圓C的標(biāo)準(zhǔn)方程為【小問(wèn)2詳解】設(shè)切線PQ的方程為,,,,,由,消去y得①,則,解得或(舍去),將代入①得,,解得,則,所以,又R為PQ中點(diǎn),則,因?yàn)镻A,PB斜率都存在,不妨設(shè),,由①可得,所以,,同理,,則,又R,A,B三點(diǎn)共線,則,化簡(jiǎn)得,所以.20、(1);(2)為定值.【解析】(1)根據(jù)題意,列出的方程組,求解即可;(2)對(duì)直線的斜率是否存在進(jìn)行討論,當(dāng)直線斜率存在時(shí),設(shè)出直線的方程,聯(lián)立橢圓方程,利用韋達(dá)定理,轉(zhuǎn)化,求解即可.【小問(wèn)1詳解】因?yàn)闄E圓過(guò)兩點(diǎn),故可得,解得,故橢圓方程為:.【小問(wèn)2詳解】由(1)可得:,故橢圓的右焦點(diǎn)的坐標(biāo)為;當(dāng)直線的斜率不存在時(shí),此時(shí)直線的方程為:,代入橢圓方程,可得,不妨取,又,故.當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為:,聯(lián)立橢圓方程,可得:,設(shè)坐標(biāo)為,故可得,則.綜上所述,為定值.【點(diǎn)睛】本題考察橢圓方程的求解,以及橢圓中的定值問(wèn)題;處理問(wèn)題的關(guān)鍵是合理的利用韋達(dá)定理,將目標(biāo)式進(jìn)行轉(zhuǎn)化,屬中檔題.21、(1)見(jiàn)解析;(2).【解析】(1)連接,,連接,證明CE∥即可;(2)建立空間直角坐標(biāo)系,求出平面與平面EDC的法向量,利用向量法求二面角的正弦值.【小問(wèn)1詳解】如圖,連接,,連接,∵BC∥且BC=,∴四邊形是平行四邊形,∴∥且,∵E是中點(diǎn),G是中點(diǎn),∴∥CG且,∴四邊形是平行四邊形,∴∥CE,∵平面,CE平面,∴CE∥平面;【小問(wèn)2詳解】如圖建立空間直角坐標(biāo)系,設(shè)正方體的棱長(zhǎng)為2,則,則,設(shè)平面的法向量為,則,??;設(shè)平面EDC的法向量為,則,取,則;設(shè)平面與
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2.2社會(huì)主義制度在中國(guó)的確立 逐字稿 統(tǒng)編版高中政治必修一中國(guó)特色社會(huì)主義
- 2025年醫(yī)療安全制度試題及答案
- 醫(yī)院病歷管理規(guī)范制度制度
- 醫(yī)院醫(yī)療質(zhì)量與安全管理持續(xù)改進(jìn)教育培訓(xùn)制度
- 醫(yī)院醫(yī)療廢物處置設(shè)施管理制度
- 醫(yī)院醫(yī)療爭(zhēng)議調(diào)解與仲裁制度
- 知情同意的經(jīng)濟(jì)成本與患者效益研究
- 知情同意中醫(yī)療術(shù)語(yǔ)通俗化溝通技巧
- 眼科手術(shù)器械的3D打印精細(xì)化制造
- 真實(shí)世界數(shù)據(jù)在糖尿病足潰瘍愈合臨床路徑中的應(yīng)用
- DB51-T 401-2025 禾本科牧草栽培技術(shù)規(guī)程 黑麥草屬
- 2026四川廣安安農(nóng)發(fā)展集團(tuán)有限公司第一批次招聘勞務(wù)派遣制人員15人筆試備考試題及答案解析
- 肯尼亞介紹全套課件
- 中國(guó)眼底病臨床診療指南2025年版
- 押題專輯十五:14道押題+精準(zhǔn)解題+14篇范文+點(diǎn)評(píng)遷移七年級(jí)語(yǔ)文上學(xué)期期末作文押題(新教材統(tǒng)編版)
- 2025年高職(中醫(yī)康復(fù)技術(shù))運(yùn)動(dòng)康復(fù)綜合測(cè)試題及答案
- 2025年重癥三基考試試題及答案
- 工貿(mào)行業(yè)安全員培訓(xùn)課件
- 2025年青島衛(wèi)生局事業(yè)單位考試及答案
- 紀(jì)委檔案規(guī)范制度
- 金太陽(yáng)云南省2025-2026學(xué)年高一上學(xué)期12月聯(lián)考英語(yǔ)試卷
評(píng)論
0/150
提交評(píng)論