版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省玉溪市江川區(qū)第二中學2022-2023學年高三第二學期高考數學試題模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則為()A. B. C. D.2.函數在上為增函數,則的值可以是()A.0 B. C. D.3.對于定義在上的函數,若下列說法中有且僅有一個是錯誤的,則錯誤的一個是()A.在上是減函數 B.在上是增函數C.不是函數的最小值 D.對于,都有4.記集合和集合表示的平面區(qū)域分別是和,若在區(qū)域內任取一點,則該點落在區(qū)域的概率為()A. B. C. D.5.復數的共軛復數在復平面內所對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.公比為2的等比數列中存在兩項,,滿足,則的最小值為()A. B. C. D.7.在復平面內,復數z=i對應的點為Z,將向量繞原點O按逆時針方向旋轉,所得向量對應的復數是()A. B. C. D.8.若為虛數單位,則復數,則在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.隨著人民生活水平的提高,對城市空氣質量的關注度也逐步增大,下圖是某城市月至月的空氣質量檢測情況,圖中一、二、三、四級是空氣質量等級,一級空氣質量最好,一級和二級都是質量合格天氣,下面敘述不正確的是()A.1月至8月空氣合格天數超過天的月份有個B.第二季度與第一季度相比,空氣達標天數的比重下降了C.8月是空氣質量最好的一個月D.6月份的空氣質量最差.10.已知集合,則全集則下列結論正確的是()A. B. C. D.11.已知,則()A.5 B. C.13 D.12.已知是等差數列的前項和,,,則()A.85 B. C.35 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數列的前n項和為Sn,若,則____.14.某中學數學競賽培訓班共有10人,分為甲、乙兩個小組,在一次階段測試中兩個小組成績的莖葉圖如圖所示,若甲組5名同學成績的平均數為81,乙組5名同學成績的中位數為73,則x-y的值為________.15.如果橢圓的對稱軸為坐標軸,短軸的一個端點與兩焦點組成一正三角形,焦點在x軸上,且=,那么橢圓的方程是.16.已知,滿足約束條件則的最小值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:()的左、右頂點分別為、,焦距為2,點為橢圓上異于、的點,且直線和的斜率之積為.(1)求的方程;(2)設直線與軸的交點為,過坐標原點作交橢圓于點,試探究是否為定值,若是,求出該定值;若不是,請說明理由.18.(12分)已知函數.(1)若對任意x0,f(x)0恒成立,求實數a的取值范圍;(2)若函數f(x)有兩個不同的零點x1,x2(x1x2),證明:.19.(12分)在直角坐標系x0y中,把曲線α為參數)上每個點的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得到曲線以坐標原點為極點,以x軸正半軸為極軸,建立極坐標系,曲線的極坐標方程(1)寫出的普通方程和的直角坐標方程;(2)設點M在上,點N在上,求|MN|的最小值以及此時M的直角坐標.20.(12分)已知直線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)設點,直線與曲線交于兩點,求的值.21.(12分)如圖,四棱錐,側面是邊長為2的正三角形,且與底面垂直,底面是的菱形,為棱上的動點,且.(I)求證:為直角三角形;(II)試確定的值,使得二面角的平面角余弦值為.22.(10分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點.(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數函數的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.2、D【解析】
依次將選項中的代入,結合正弦、余弦函數的圖象即可得到答案.【詳解】當時,在上不單調,故A不正確;當時,在上單調遞減,故B不正確;當時,在上不單調,故C不正確;當時,在上單調遞增,故D正確.故選:D【點睛】本題考查正弦、余弦函數的單調性,涉及到誘導公式的應用,是一道容易題.3、B【解析】
根據函數對稱性和單調性的關系,進行判斷即可.【詳解】由得關于對稱,若關于對稱,則函數在上不可能是單調的,故錯誤的可能是或者是,若錯誤,則在,上是減函數,在在上是增函數,則為函數的最小值,與矛盾,此時也錯誤,不滿足條件.故錯誤的是,故選:.【點睛】本題主要考查函數性質的綜合應用,結合對稱性和單調性的關系是解決本題的關鍵.4、C【解析】
據題意可知,是與面積有關的幾何概率,要求落在區(qū)域內的概率,只要求、所表示區(qū)域的面積,然后代入概率公式,計算即可得答案.【詳解】根據題意可得集合所表示的區(qū)域即為如圖所表示:的圓及內部的平面區(qū)域,面積為,集合,,表示的平面區(qū)域即為圖中的,,根據幾何概率的計算公式可得,故選:C.【點睛】本題主要考查了幾何概率的計算,本題是與面積有關的幾何概率模型.解決本題的關鍵是要準確求出兩區(qū)域的面積.5、D【解析】
由復數除法運算求出,再寫出其共軛復數,得共軛復數對應點的坐標.得結論.【詳解】,,對應點為,在第四象限.故選:D.【點睛】本題考查復數的除法運算,考查共軛復數的概念,考查復數的幾何意義.掌握復數的運算法則是解題關鍵.6、D【解析】
根據已知條件和等比數列的通項公式,求出關系,即可求解.【詳解】,當時,,當時,,當時,,當時,,當時,,當時,,最小值為.故選:D.【點睛】本題考查等比數列通項公式,注意為正整數,如用基本不等式要注意能否取到等號,屬于基礎題.7、A【解析】
由復數z求得點Z的坐標,得到向量的坐標,逆時針旋轉,得到向量的坐標,則對應的復數可求.【詳解】解:∵復數z=i(i為虛數單位)在復平面中對應點Z(0,1),
∴=(0,1),將繞原點O逆時針旋轉得到,
設=(a,b),,則,即,
又,解得:,∴,對應復數為.故選:A.【點睛】本題考查復數的代數表示法及其幾何意義,是基礎題.8、B【解析】
首先根據特殊角的三角函數值將復數化為,求出,再利用復數的幾何意義即可求解.【詳解】,,則在復平面內對應的點的坐標為,位于第二象限.故選:B【點睛】本題考查了復數的幾何意義、共軛復數的概念、特殊角的三角函數值,屬于基礎題.9、D【解析】由圖表可知月空氣質量合格天氣只有天,月份的空氣質量最差.故本題答案選.10、D【解析】
化簡集合,根據對數函數的性質,化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結論.【詳解】由,則,故,由知,,因此,,,,故選:D【點睛】本題考查集合運算以及集合間的關系,求解不等式是解題的關鍵,屬于基礎題.11、C【解析】
先化簡復數,再求,最后求即可.【詳解】解:,,故選:C【點睛】考查復數的運算,是基礎題.12、B【解析】
將已知條件轉化為的形式,求得,由此求得.【詳解】設公差為,則,所以,,,.故選:B【點睛】本小題主要考查等差數列通項公式的基本量計算,考查等差數列前項和的計算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由,,成等差數列,代入可得的值.【詳解】解:由等差數列的性質可得:,,成等差數列,可得:,代入,可得:,故答案為:.【點睛】本題主要考查等差數列前n項和的性質,相對不難.14、【解析】
根據莖葉圖中的數據,結合平均數與中位數的概念,求出x、y的值.【詳解】根據莖葉圖中的數據,得:甲班5名同學成績的平均數為,解得;又乙班5名同學的中位數為73,則;.故答案為:.【點睛】本題考查莖葉圖及根據莖葉圖計算中位數、平均數,考查數據分析能力,屬于簡單題.15、【解析】
由題意可設橢圓方程為:∵短軸的一個端點與兩焦點組成一正三角形,焦點在軸上∴又,∴,∴橢圓的方程為,故答案為.考點:橢圓的標準方程,解三角形以及解方程組的相關知識.16、【解析】
畫出可行域,通過平移基準直線到可行域邊界位置,由此求得目標函數的最小值.【詳解】畫出可行域如下圖所示,由圖可知:可行域是由三點,,構成的三角形及其內部,當直線過點時,取得最小值.故答案為:【點睛】本小題主要考查利用線性規(guī)劃求目標函數的最值,考查數形結合的數學思想方法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)是定值,且定值為2【解析】
(1)設出點坐標并代入橢圓方程,根據列方程,求得的值,結合求得的值,進而求得橢圓的方程.(2)設出直線的方程,聯立直線的方程和橢圓方程,求得點的橫坐標,聯立直線的方程和橢圓方程,求得,由此化簡求得為定值.【詳解】(1)已知點在橢圓:()上,可設,即,又,且,可得橢圓的方程為.(2)設直線的方程為:,則直線的方程為.聯立直線與橢圓的方程可得:,由,可得,聯立直線與橢圓的方程可得:,即,即.即為定值,且定值為2.【點睛】本小題主要考查本小題主要考查橢圓方程的求法,考查橢圓中的定值問題的求解,考查直線和橢圓的位置關系,考查運算求解能力,屬于中檔題.18、(1);(2)證明見解析.【解析】
(1)求出,判斷函數的單調性,求出函數的最大值,即求的范圍;(2)由(1)可知,.對分和兩種情況討論,構造函數,利用放縮法和基本不等式證明結論.【詳解】(1)由,得.令.當時,;當時,;在上單調遞增,在上單調遞減,.對任意恒成立,.(2)證明:由(1)可知,在上單調遞增,在上單調遞減,.若,則,令在上單調遞增,,.又,在上單調遞減,.若,則顯然成立.綜上,.又以上兩式左右兩端分別相加,得,即,所以.【點睛】本題考查利用導數解決不等式恒成立問題,利用導數證明不等式,屬于難題.19、(1)的普通方程為,的直角坐標方程為.(2)最小值為,此時【解析】
(1)由的參數方程消去求得的普通方程,利用極坐標和直角坐標轉化公式,求得的直角坐標方程.(2)設出點的坐標,利用點到直線的距離公式求得最小值的表達式,結合三角函數的指數求得的最小值以及此時點的坐標.【詳解】(1)由題意知的參數方程為(為參數)所以的普通方程為.由得,所以的直角坐標方程為.(2)由題意,可設點的直角坐標為,因為是直線,所以的最小值即為到的距離,因為.當且僅當時,取得最小值為,此時的直角坐標為即.【點睛】本小題主要考查參數方程化為普通方程,考查極坐標方程化為直角坐標方程,考查利用曲線參數方程求解點到直線距離的最小值問題,屬于中檔題.20、(1)直線普通方程:,曲線直角坐標方程:;(2).【解析】
(1)消去直線參數方程中的參數即可得到其普通方程;將曲線極坐標方程化為,根據極坐標和直角坐標互化原則可得其直角坐標方程;(2)將直線參數方程代入曲線的直角坐標方程,根據參數的幾何意義可知,利用韋達定理求得結果.【詳解】(1)由直線參數方程消去可得普通方程為:曲線極坐標方程可化為:則曲線的直角坐標方程為:,即(2)將直線參數方程代入曲線的直角坐標方程,整理可得:設兩點對應的參數分別為:,則,【點睛】本題考查極坐標與直角坐標的互化、參數方程與普通方程的互化、直線參數方程中參數的幾何意義的應用;求解距離之和的關鍵是能夠明確直線參數方程中參數的幾何意義,利用韋達定理來進行求解.21、(1)見解析;(II).【解析】
試題分析:(1)取中點,連結,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能證明為直角三角形;(2)設,由,得,求出平面的法向量和平面的法向量,,根據空間向量夾角余弦公式能求出結果.試題解析:(I)取中點,連結,依題意可知均為正三角形,所以,又平面平面,所以平面,又平面,所以,因為,所以,即,從而為直角三角形.(II)法一:由(I)可知,又平面平面,平面平面,平面,所以平面.以為原點,建立空間直角坐標系如圖所示,則,由可得點的坐標所以,設平面的法向量為,則,即解得,令,得,顯然平面的一個法向量為,依題意,解得或(舍去),所以,當時,二面角的余弦值為.法二:由(I)可知平面,所以,所以為二面角的平面角,即,在中,,所以,由正弦定理可得,即解得,又,所以,所以,當時,二面角的余弦值為.22、(Ⅰ)見解析;(Ⅱ)【解析】
(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點M,連接ME,證明;(Ⅱ)由題意可知點到平面ABC的距離等于點到平面ABC的距離,根據體積公式剩余部分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 六安安徽六安舒城縣鄉(xiāng)鎮(zhèn)衛(wèi)生院“縣管鄉(xiāng)用”招聘衛(wèi)生專業(yè)技術人員21人筆試歷年參考題庫附帶答案詳解
- 2026年高級管理人員必修課組織行為學重點題解
- 2026年金融投資風險管理與收益優(yōu)化題集
- 2026年移動應用測試場景化用例設計實戰(zhàn)測試
- 職業(yè)性眼外傷的疫苗預防策略
- 2026年航空公司空乘人員面試問題集
- 2026年醫(yī)學基礎知識考試題集與解析
- 2026年網絡安全工程師中級技能考核題
- 2026年個人安全防護裝備個人防護裝備使用培訓題集
- 2026年Python編程語言考試題庫及答案解析
- 低壓配電維修培訓知識課件
- 室性心動過速課件
- 融資管理辦法國資委
- GB/T 45870.1-2025彈簧測量和試驗參數第1部分:冷成形圓柱螺旋壓縮彈簧
- 倉庫物料儲存知識培訓課件
- 數字化轉型下的人力資源管理創(chuàng)新-洞察及研究
- 門診部醫(yī)保內部管理制度
- (高清版)DB62∕T 2637-2025 道路運輸液體危險貨物罐式車輛 金屬常壓罐體定期檢驗規(guī)范
- 化糞池清掏疏通合同范本5篇
- 物理學(祝之光) 靜電場1學習資料
- 個人項目投資協(xié)議合同范例
評論
0/150
提交評論