淺談小波分析理論及其應(yīng)用_第1頁
淺談小波分析理論及其應(yīng)用_第2頁
淺談小波分析理論及其應(yīng)用_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

淺談小波分析理論及其應(yīng)用一、前言小波分析作為信號處理領(lǐng)域中的一個(gè)重要分析工具,近年來在圖像處理、壓縮、去噪等領(lǐng)域得到越來越廣泛的應(yīng)用。本文將從小波分析的基本原理、應(yīng)用案例等方面進(jìn)行探討。二、小波分析基本原理小波分析(WaveletAnalysis)是把原始信號分解成一組小波基函數(shù)的過程,小波是一種能量有限的信號,在時(shí)域和頻域上均具有局部性。小波變換把信號分解成尺度和頻率兩個(gè)方向上的成分,而小波基函數(shù)具有很好的局部性,能夠精確表示信號中的局部特征。小波變換的基本公式為:$$W(a,b)=\\int_{-\\infty}^{\\infty}x(t)\\frac{1}{\\sqrt{|a|}}\\psi(\\frac{t-b}{a})dt$$其中,xt為原始信號,a和b分別稱為尺度因子和位移因子,$\\psi(t)$三、小波分析應(yīng)用案例1.圖像壓縮基于小波分析的圖像壓縮方法主要有兩種:離散小波變換(DWT)和整數(shù)小波變換(IWT)。離散小波變換離散小波變換的基本思想是把圖像分成若干個(gè)小塊,對每個(gè)小塊進(jìn)行小波變換,然后保留一定數(shù)量的小波系數(shù),舍去剩余的系數(shù),再用保留的系數(shù)進(jìn)行逆小波變換,得到壓縮后的圖像。通常采用比特率(單位像素的比特?cái)?shù))作為衡量壓縮效率的指標(biāo)。整數(shù)小波變換整數(shù)小波變換是對一幅圖像進(jìn)行整數(shù)個(gè)濾波器組合,把原始圖像分成若干個(gè)子塊,對每個(gè)子塊進(jìn)行整數(shù)小波變換,然后針對每個(gè)子塊分別保留一定數(shù)量的小波系數(shù),再用保留的系數(shù)進(jìn)行逆小波變換,得到壓縮后的圖像。2.信號去噪小波變換也被廣泛應(yīng)用于信號去噪領(lǐng)域。小波變換可以把信號分解成不同的頻帶,高頻部分對應(yīng)的是噪聲,低頻部分對應(yīng)的是有用信號。通過對低頻部分的濾波和截?cái)喔哳l部分的系數(shù),可以達(dá)到去噪的效果。3.語音識別小波變換也被應(yīng)用于語音識別領(lǐng)域。一般而言,小波變換也可以把信號分解成不同的頻帶,不同頻帶內(nèi)語音信息的傳輸特性不同,對應(yīng)不同的語音特征。利用小波變換得到的頻域信息,可以對語音信號進(jìn)行分析和識別。四、小結(jié)小波分析作為一種重要的分析工具,具有很好的局部性和尺度性,在信號

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論