許昌市重點(diǎn)中學(xué)2023年高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題含解析_第1頁(yè)
許昌市重點(diǎn)中學(xué)2023年高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題含解析_第2頁(yè)
許昌市重點(diǎn)中學(xué)2023年高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題含解析_第3頁(yè)
許昌市重點(diǎn)中學(xué)2023年高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題含解析_第4頁(yè)
許昌市重點(diǎn)中學(xué)2023年高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

許昌市重點(diǎn)中學(xué)2023年高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.定義在R上的偶函數(shù)在上單調(diào)遞增,且,則滿足的x的取值范圍是()A. B.C. D.2.f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f(x)g(x)+f(x)g(x)<0且f(﹣1)=0則不等式f(x)g(x)<0的解集為A.(﹣1,0)∪(1,+∞) B.(﹣1,0)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)∪(0,1)3.某中學(xué)高一年級(jí)有200名學(xué)生,高二年級(jí)有260名學(xué)生,高三年級(jí)有340名學(xué)生,為了了解該校高中學(xué)生完成作業(yè)情況,現(xiàn)用分層抽樣的方法抽取一個(gè)容量為40的樣本,則高二年級(jí)抽取的人數(shù)為()A.10 B.13C.17 D.264.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若c=1,B=45°,cosA=,則b等于()A. B.C. D.5.已知點(diǎn)、為橢圓的左、右焦點(diǎn),若點(diǎn)為橢圓上一動(dòng)點(diǎn),則使得的點(diǎn)的個(gè)數(shù)為()A. B.C. D.不能確定6.已知命題p:?x>2,x2>2x,命題q:?x0∈R,ln(x02+1)<0,則下列命題是真命題的是()A.p∧ B.p∨C.p∧q D.p∨q7.若點(diǎn),在拋物線上,是坐標(biāo)原點(diǎn),若等邊三角形的面積為,則該拋物線的方程是()A. B.C. D.8.已知空間向量,,,下列命題中正確的個(gè)數(shù)是()①若與共線,與共線,則與共線;②若,,非零且共面,則它們所在的直線共面;⑧若,,不共面,那么對(duì)任意一個(gè)空間向量,存在唯一有序?qū)崝?shù)組,使得;④若,不共線,向量,則可以構(gòu)成空間的一個(gè)基底.A.0 B.1C.2 D.39.《張邱建算經(jīng)》記載:今有女子不善織布,逐日織布同數(shù)遞減,初日織五尺,末一日織一尺,計(jì)織三十日,問(wèn)第11日到第20日這10日共織布()A.30尺 B.40尺C.6尺 D.60尺10.雙曲線的離心率的取值范圍為,則實(shí)數(shù)的取值范圍為()A. B.C. D.11.是等差數(shù)列,,,的第()項(xiàng)A.98 B.99C.100 D.10112.已知兩個(gè)向量,,且,則的值為()A.-2 B.2C.10 D.-10二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的離心率是______14.已知橢圓的長(zhǎng)軸在軸上,若焦距為4,則__________.15.不等式的解集是________16.長(zhǎng)方體中,,已知點(diǎn)與三點(diǎn)共線且,則點(diǎn)到平面的距離為_(kāi)_______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)集合(1)若,求;(2)設(shè),若是成立的必要不充分條件,求實(shí)數(shù)a的取值范圍18.(12分)在△中,角A,B,C的對(duì)邊分別為a,b,c,已知,,.(1)求的大小及△的面積;(2)求的值.19.(12分)如圖,在三棱錐中,側(cè)面為等邊三角形,,,平面平面,為的中點(diǎn).(1)求證:;(2)若,求二面角的大小.20.(12分)已知正三棱柱底面邊長(zhǎng)為,是上一點(diǎn),是以為直角頂點(diǎn)的等腰直角三角形,(1)證明:是的中點(diǎn);(2)求二面角的大小21.(12分)設(shè)橢圓的左、右焦點(diǎn)分別為,.點(diǎn)滿足.(1)求橢圓的離心率;(2)設(shè)直線與橢圓相交于,兩點(diǎn),若直線與圓相交于,兩點(diǎn),且,求橢圓的方程.22.(10分)已知分別是橢圓的左、右焦點(diǎn),點(diǎn)是橢圓上的一點(diǎn),且的面積為1.(1)求橢圓的短軸長(zhǎng);(2)過(guò)原點(diǎn)的直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓上的一點(diǎn),若為等邊三角形,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】,再根據(jù)函數(shù)的奇偶性和單調(diào)性可得或,解之即可得解.【詳解】解:,由題意可得或即或,解得或故選:B.2、A【解析】構(gòu)造函數(shù)h(x)=f(x)g(x),由已知得當(dāng)x<0時(shí),h(x)<0,所以函數(shù)y=h(x)在(﹣∞,0)單調(diào)遞減,又因?yàn)閒(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),得函數(shù)y=h(x)為R上的奇函數(shù),所以函數(shù)y=h(x)在(0,+∞)單調(diào)遞減,得到f(x)g(x)<0不等式的解集【詳解】設(shè)h(x)=f(x)g(x),因?yàn)楫?dāng)x<0時(shí),f(x)g(x)+f(x)g(x)<0,所以當(dāng)x<0時(shí),h(x)<0,所以函數(shù)y=h(x)在(﹣∞,0)單調(diào)遞減,又因?yàn)閒(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),所以函數(shù)y=h(x)為R上的奇函數(shù),所以函數(shù)y=h(x)在(0,+∞)單調(diào)遞減,因?yàn)閒(﹣1)=0,所以函數(shù)y=h(x)的大致圖象如下:所以等式f(x)g(x)<0的解集為(﹣1,0)∪(1,+∞)故選A【點(diǎn)睛】本題考查導(dǎo)數(shù)乘法法則、導(dǎo)數(shù)的符號(hào)與函數(shù)單調(diào)性的關(guān)系;奇函數(shù)的單調(diào)性在對(duì)稱區(qū)間上一致,屬于中檔題3、B【解析】計(jì)算出抽樣比可得答案.【詳解】該校高中學(xué)生共有名,所以高二年級(jí)抽取的人數(shù)名.故選:B.4、C【解析】先由cosA的值求出,進(jìn)而求出,用正弦定理求出b的值.【詳解】因?yàn)閏osA=,所以,所以由正弦定理:,得:.故選:C5、B【解析】利用余弦定理結(jié)合橢圓的定義可求得、,即可得出結(jié)論.【詳解】在橢圓中,,,,則,,可得,所以,,解得,此時(shí)點(diǎn)位于橢圓短軸的頂點(diǎn).因此,滿足條件的點(diǎn)的個(gè)數(shù)為.故選:B.6、B【解析】取x=4,得出命題p是假命題,由對(duì)數(shù)的運(yùn)算得出命題q是假命題,再判斷選項(xiàng).【詳解】命題p:?x>2,x2>2x,是假命題,例如取x=4,則42=24;命題q:?x0∈R,ln(x02+1)<0,是假命題,∵?x∈R,ln(x2+1)≥0.則下列命題是真命題的是.故選:B.7、A【解析】根據(jù)等邊三角形的面積求得邊長(zhǎng),根據(jù)角度求得點(diǎn)的坐標(biāo),代入拋物線方程求得的值.【詳解】設(shè)等邊三角形的邊長(zhǎng)為,則,解得根據(jù)拋物線的對(duì)稱性可知,且,設(shè)點(diǎn)在軸上方,則點(diǎn)的坐標(biāo)為,即,將代入拋物線方程得,解得,故拋物線方程為故選:A8、B【解析】用向量共線或共面的基本定理即可判斷.【詳解】若與,與共線,,則不能判定,故①錯(cuò)誤;若非零向量共面,則向量可以在一個(gè)與組成的平面平行的平面上,故②錯(cuò)誤;不共面,意味著它們都是非零向量,可以作為一組基底,故③正確;,∴與共面,故不能組成一個(gè)基底,故④錯(cuò)誤;故選:C.9、A【解析】由題意可知,每日的織布數(shù)構(gòu)成等差數(shù)列,由等差數(shù)列的求和公式得解.【詳解】由題女子織布數(shù)成等差數(shù)列,設(shè)第日織布為,有,所以,故選:A.10、C【解析】分析可知,利用雙曲線的離心率公式可得出關(guān)于的不等式,即可解得實(shí)數(shù)的取值范圍.【詳解】由題意有,,則,解得:故選:C.11、C【解析】等差數(shù)列,,中,,,由此求出,令,得到是這個(gè)數(shù)列的第100項(xiàng)【詳解】解:等差數(shù)列,,中,,令,得是這個(gè)數(shù)列的第100項(xiàng)故選:C12、C【解析】根據(jù)向量共線可得滿足的關(guān)系,從而可求它們的值,據(jù)此可得正確的選項(xiàng).【詳解】因?yàn)?,故存在常?shù),使得,所以,故,所以,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出、、的值,即可得出橢圓的離心率.【詳解】在橢圓中,,,,因此,橢圓的離心率是.故答案為:.14、8【解析】根據(jù)橢圓方程列方程,解得結(jié)果.【詳解】因?yàn)闄E圓的長(zhǎng)軸在軸上,焦距為4,所以故答案為:8【點(diǎn)睛】本題考查根據(jù)橢圓方程求參數(shù),考查基本分析求解能力,屬基礎(chǔ)題.15、【解析】先將分式不等式化為一元二次不等式,再根據(jù)一元二次不等式的解法解不等式即可【詳解】∵,∴(x﹣2)(x+4)<0,∴-4<x<2,即不等式的解集為{x|-4<x<2}故答案為.【點(diǎn)睛】本題主要考查分式不等式及一元二次不等式的解法,比較基礎(chǔ)16、【解析】利用坐標(biāo)法,利用向量共線及垂直的坐標(biāo)表示可求,即求.【詳解】如圖建立空間直角坐標(biāo)系,則,因?yàn)辄c(diǎn)與三點(diǎn)共線且,,設(shè),即,∴,∴,∴,即,∴點(diǎn)到平面的距離為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)根據(jù)不等式的解答求得,當(dāng)時(shí),求得,結(jié)合集合并集的運(yùn)算,即可求解;(2)由題意得到是的真子集,根據(jù)集合間的包含關(guān)系,列出不等式組,即可求解.【小問(wèn)1詳解】解:由,解得,即,當(dāng)時(shí),可得,所以.【小問(wèn)2詳解】解:由集合,因?yàn)?,且是成立的必要不充分條件,是的真子集,所以且等號(hào)不能同時(shí)成立,解得,其中當(dāng)和是滿足題意,故實(shí)數(shù)的取值范圍是.18、(1),△的面積為;(2).【解析】(1)應(yīng)用余弦定理求的大小,由三角形面積公式求△的面積;(2)由(1)及正弦定理的邊角關(guān)系可得,即可求目標(biāo)式的值.【小問(wèn)1詳解】在△中,由余弦定理得:,又,則.所以△的面積為.【小問(wèn)2詳解】由(1)得:,由正弦定理得:,則,所以.19、(1)證明見(jiàn)解析(2)【解析】(1)取中點(diǎn),由面面垂直和線面垂直性質(zhì)可證得,結(jié)合,由線面垂直判定可證得平面,由線面垂直性質(zhì)可得結(jié)論;(2)以為坐標(biāo)原點(diǎn)可建立空間直角坐標(biāo)系,由向量數(shù)乘運(yùn)算可求得點(diǎn)坐標(biāo),利用二面角的向量求法可求得結(jié)果.【小問(wèn)1詳解】取中點(diǎn),連接,為等邊三角形,為中點(diǎn),,平面平面,平面平面,平面,平面,又平面,;分別為中點(diǎn),,又,,平面,,平面,又平面,.【小問(wèn)2詳解】以為坐標(biāo)原點(diǎn),為軸可建立如圖所示空間直角坐標(biāo)系,則,,,,,設(shè),則,,由得:,解得:,即,,設(shè)平面的法向量,則,令,解得:,,;又平面的一個(gè)法向量,;由圖象知:二面角為銳二面角,二面角的大小為.20、(1)證明見(jiàn)解析;(2).【解析】(1)根據(jù)正棱柱的性質(zhì),結(jié)合線面垂直的判定定理、直角三角形的性質(zhì)、正三角形的性質(zhì)進(jìn)行證明即可;(2)根據(jù)線面垂直的判定定理和性質(zhì),結(jié)合二面角的定義進(jìn)行求解即可.【小問(wèn)1詳解】證明:在正三棱柱中,平面,平面,則,又是以為直角頂點(diǎn)的等腰直角三角形,則,且,平面,故平面,而平面,所以,又為正三角形,所以為的中點(diǎn);【小問(wèn)2詳解】在正中,取的中點(diǎn)為,則,又平面,則,且,平面,故平面,取的中點(diǎn)為,且的中點(diǎn)為,則,故平面,而平面,所以,在等腰直角中,取的中點(diǎn)為,則,,平面,所以平面,而平面,所以,故為二面角平面角,又,則,,所以在中,,即:,故二面角的大小為.:21、(1);(2)【解析】(1)由及兩點(diǎn)間距離公式可建立等式,消去b,即可求解出,主要兩個(gè)根的的要舍去;(2)聯(lián)立直線和橢圓的方程,利用弦長(zhǎng)公式求得,再利用幾何關(guān)系求得,代入,可解得c,從而得到橢圓的方程.【詳解】(1)設(shè),,因?yàn)?,所以,整理得,得(舍),或,所以;?)由(1)知,,可得橢圓方程為,直線的方程為,A,B兩點(diǎn)的坐標(biāo)滿足方程組為,消去y并整理,得,解得:,,得方程組的解和,不妨設(shè):,,所以,于是,圓心到直線的距離為,因?yàn)?,所以,整理得:,得(舍),或,所以橢圓方程為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查求橢圓的離心率解題關(guān)鍵是找到關(guān)于a,b,c的等量關(guān)系,第二問(wèn)的關(guān)鍵是聯(lián)立直線與橢圓方程求出交點(diǎn)坐標(biāo),利用距離公式建立等量關(guān)系,求出c是求出橢圓方程的關(guān)鍵.22、(1)2(2)【解析】(1)根據(jù)題意表示出的面積,即可求得結(jié)果;(2)分類討論直線斜率情況,然后根據(jù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論