版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
§1.1ErrorsandSignificantDigits1.1.1Truncationerrorandroundofferror
Truncationerror:madebynumericalalgorithms,arisefromtakingfinitenumberofstepsincomputation
Chapter1
Errors2023/11/101computation
sinx,where
Accordingtotheexpansionofsin
x(1.1)
Butwehavetouseitsfiniteitemstoapproximatesinx,forexample,
computesin0.5,setn=3,Eg.1.12023/11/102xisaradian,notdegree.
AccordingtotheTaylor’sremainder,(1.2)Thisresultisveryaccurate.2023/11/103Eg.1.2TakingonlyafewtermsofaMaclaurinseriestoapproximateIfonly3termsareused,2023/11/104Eg.1.3(Secantline)UsingafinitetoapproximatePQsecantlinetangentlineFigure1.ApproximatederivativeusingfiniteΔx2023/11/1056Eg.1.4(Differentiation)FindforusingandTheactualvalueisTruncationerroristhen,Canyoufindthetruncationerrorwith2023/11/107Eg.1.4(Integration)Usetworectanglesofequalwidthtoapproximatetheareaunderthecurveforovertheinterval2023/11/10Integrationexample(cont.)Choosingawidthof3,wehaveActualvalueisgivenbyTruncationerroristhenCanyoufindthetruncationerrorwith4rectangles?2023/11/108Roundofferror:usingfiniteprecisionfloating-pointnumbersoncomputerstorepresentrealnumbers
2023/11/1091.1.2Absoluteerrorandrelativeerror
Definition1.1let
x*betheaccuratevalue(unknown),andxbeanapproximationtox*,then
E=x-x*iscalledtheabsoluteerrorofx*.Ingeneral,wecan’tgettheabsoluteerrorbecausewedonotknowthetruevalueofx,butwecanestimatetheerrorwithabsoluteerrorbounddefinedasfollows:
Definition1.2Apositivenumber?iscalledtheabsoluteerrorboundofx*if|x*-x|≤ε.2023/11/1010
Remark.Ingeneral,x*isunknown,sowereplacex*byx,
Canyougivethereason?
Definition1.3Ifxisanapproximationtox*,then
iscalledtherelativeerrorofx*.2023/11/1011Eg.1.5Supposex=9999,x*=10000,y=9,y*=10.Pleaseshowtheabsoluteerrorandrelativeerrorofthem.Solution.Ex=9999-10000=-1,Ey=9-10=-1.
er(x)=(9999-10000)/10000=-0.0001.
er(y)=(9-10)/10=-0.1.1.1.3SignificantDigitsDefintion1.4Supposeistheapproximationtox*.Ifthenthenumberxissaidtoapproximatex*tolsignificantdigits.2023/11/1012MachinerepresentationofnumbersEg.1.6Supposex*=20.03173,andx1=20.03,x2=20.031,x3=20.032areitsapproximationsrespectively.Determinethenumbersofsignificantdigitsofthem.Solution.Rewritex1,x2andx3asx1=0.2003×102,x2=0.20031×102,x3=0.20032×102.Since
AccordingtoDefinition1.4,x1,x2andx3have4,4and5significantdigitsrespectively.2023/11/1013Sometimes,wecutalongnumberintoashortnumberthroughrounding.Eg.1.7Accordingtotheroundingrule,writethefollowingnumberswith5significantdigits.
①287.9325②0.03785551③8.000033④2.718281828459045⑤2.765450Solution.
①287.9325≈287.93(roundingdown)②0.03785551≈0.037856(roundingup)③8.000033≈8.0000(roundingdown)④2.718281828459045≈2.7183(roundingup)⑤2.765450≈2.7655(roundingup)2023/11/1014Theorem1.1Suppose
withnsignificantdigits,thentherelativeerrorboundofx*Theorem1.2Iftherelativeerrorboundofisthenxhasatleastnsignificantdigits.2023/11/1015§1.2PropagationofErrorsWhenweuseinaccuratenumberstocalculate,howdotheseinaccuraciespropagatethroughthecalculations?2023/11/1016Eg.1.8Findtheboundsforthepropagationinaddingtwonumbers.ForexampleifoneiscalculatingX+Ywhere
X=1.5±0.05
Y=3.4±0.04SolutionMaximumpossiblevalueofX=1.55andY=3.44MaximumpossiblevalueofX+Y=1.55+3.44=4.99MinimumpossiblevalueofX=1.45andY=3.36.MinimumpossiblevalueofX+Y=1.45+3.36=4.81Hence 4.81≤X+Y≤4.99.2023/11/1017PropagationofErrorsInFormulasIfisafunctionofseveralvariablesthenthemaximumpossiblevalueoftheerrorinis2023/11/1018Eg.1.9Thestraininanaxialmemberofasquarecross-sectionisgivenbyGivenFindthemaximumpossibleerrorinthemeasuredstrain.2023/11/1019Solution
2023/11/1020ThusHence2023/11/1021Eg.10Subtractionofnumbersthatarenearlyequalcancreateunwantedinaccuracies.Usingtheformulaforerrorpropagation,showthatthisistrue.SolutionLetThenSotherelativechangeis2023/11/1022Eg.11Forexampleif=0.6667=66.67%2023/11/10231.3.1Avoidthesubtractionofnearlyequalnumbers
Thesubtractionofnearlyequalnumberswilllosssignificantdigitslargely,sothisoperationleadstoalargerrelativeerror.Eg.1.12Computetheapproximationtox*-y*using4-digits.
①x=18.496;y=17.208②x=18.496;y=18.493Solution.①Theapproximationswith4-digitsto
x*andy*usingtheRoundingRuleareasfollows:
x=18.50;y=17.21
x-y=
18.50-17.21=1.29Infact
x*-y*=18.496-17.208=1.288§3HowtoAvoidtheLossofAccuracy2023/11/1024Absoluteerror
Relativeerror
②Theapproximationswith4-digitsto
x*andy*usingtheRoundingRuleareasfollows:
x=18.50;y=18.49
x-y=
18.50-18.49=0.01infact
x*-y*=18.496-18.493=0.003
Absoluteerror
Relativeerror2023/11/1025Findabettersolution:①moresignificantdigits;②usingabettercomputationform,forexample1.3.2Avoidbignumbers“swallowing”importantsmallnumbers2023/11/1026Eg.1.1.13Tocalculate1-cos0.1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025 小學(xué)三年級(jí)科學(xué)下冊(cè)對(duì)比風(fēng)媒花與蟲媒花的特點(diǎn)課件
- 生產(chǎn)文員考試試題及答案
- 生物初一考試題目及答案
- 輔警國(guó)學(xué)培訓(xùn)課件
- 2026年深圳中考語(yǔ)文正確使用熟語(yǔ)試卷(附答案可下載)
- 2026年深圳中考英語(yǔ)題型全解全練試卷(附答案可下載)
- 危險(xiǎn)品車駕駛員培訓(xùn)課件
- 知識(shí)類題目及答案
- 2026年深圳中考數(shù)學(xué)重難點(diǎn)突破試卷(附答案可下載)
- 2026年深圳中考生物三模仿真模擬試卷(附答案可下載)
- 化工品物流樞紐項(xiàng)目運(yùn)營(yíng)管理方案
- 丈夫家暴協(xié)議書模板
- 皮帶機(jī)制作合同范本
- 糖尿病酮癥酸中毒(DKA)難治性DKA血液凈化模式選擇方案
- 基于語(yǔ)料庫(kù)的詞匯語(yǔ)法模式在大學(xué)英語(yǔ)詞匯教學(xué)中的應(yīng)用與創(chuàng)新研究
- 戶外防腐木保養(yǎng)與修復(fù)工程方案
- 2026年建筑裝飾公司應(yīng)收賬款管理管理制度
- 2025年旅游區(qū)導(dǎo)游講解服務(wù)合同協(xié)議
- 房地產(chǎn)公司財(cái)務(wù)報(bào)表編制指南
- GB/T 46210-2025項(xiàng)目成本管理指南
- 快手直播內(nèi)容分發(fā)標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論