數(shù)值分析英文版chapter 1_第1頁(yè)
數(shù)值分析英文版chapter 1_第2頁(yè)
數(shù)值分析英文版chapter 1_第3頁(yè)
數(shù)值分析英文版chapter 1_第4頁(yè)
數(shù)值分析英文版chapter 1_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

§1.1ErrorsandSignificantDigits1.1.1Truncationerrorandroundofferror

Truncationerror:madebynumericalalgorithms,arisefromtakingfinitenumberofstepsincomputation

Chapter1

Errors2023/11/101computation

sinx,where

Accordingtotheexpansionofsin

x(1.1)

Butwehavetouseitsfiniteitemstoapproximatesinx,forexample,

computesin0.5,setn=3,Eg.1.12023/11/102xisaradian,notdegree.

AccordingtotheTaylor’sremainder,(1.2)Thisresultisveryaccurate.2023/11/103Eg.1.2TakingonlyafewtermsofaMaclaurinseriestoapproximateIfonly3termsareused,2023/11/104Eg.1.3(Secantline)UsingafinitetoapproximatePQsecantlinetangentlineFigure1.ApproximatederivativeusingfiniteΔx2023/11/1056Eg.1.4(Differentiation)FindforusingandTheactualvalueisTruncationerroristhen,Canyoufindthetruncationerrorwith2023/11/107Eg.1.4(Integration)Usetworectanglesofequalwidthtoapproximatetheareaunderthecurveforovertheinterval2023/11/10Integrationexample(cont.)Choosingawidthof3,wehaveActualvalueisgivenbyTruncationerroristhenCanyoufindthetruncationerrorwith4rectangles?2023/11/108Roundofferror:usingfiniteprecisionfloating-pointnumbersoncomputerstorepresentrealnumbers

2023/11/1091.1.2Absoluteerrorandrelativeerror

Definition1.1let

x*betheaccuratevalue(unknown),andxbeanapproximationtox*,then

E=x-x*iscalledtheabsoluteerrorofx*.Ingeneral,wecan’tgettheabsoluteerrorbecausewedonotknowthetruevalueofx,butwecanestimatetheerrorwithabsoluteerrorbounddefinedasfollows:

Definition1.2Apositivenumber?iscalledtheabsoluteerrorboundofx*if|x*-x|≤ε.2023/11/1010

Remark.Ingeneral,x*isunknown,sowereplacex*byx,

Canyougivethereason?

Definition1.3Ifxisanapproximationtox*,then

iscalledtherelativeerrorofx*.2023/11/1011Eg.1.5Supposex=9999,x*=10000,y=9,y*=10.Pleaseshowtheabsoluteerrorandrelativeerrorofthem.Solution.Ex=9999-10000=-1,Ey=9-10=-1.

er(x)=(9999-10000)/10000=-0.0001.

er(y)=(9-10)/10=-0.1.1.1.3SignificantDigitsDefintion1.4Supposeistheapproximationtox*.Ifthenthenumberxissaidtoapproximatex*tolsignificantdigits.2023/11/1012MachinerepresentationofnumbersEg.1.6Supposex*=20.03173,andx1=20.03,x2=20.031,x3=20.032areitsapproximationsrespectively.Determinethenumbersofsignificantdigitsofthem.Solution.Rewritex1,x2andx3asx1=0.2003×102,x2=0.20031×102,x3=0.20032×102.Since

AccordingtoDefinition1.4,x1,x2andx3have4,4and5significantdigitsrespectively.2023/11/1013Sometimes,wecutalongnumberintoashortnumberthroughrounding.Eg.1.7Accordingtotheroundingrule,writethefollowingnumberswith5significantdigits.

①287.9325②0.03785551③8.000033④2.718281828459045⑤2.765450Solution.

①287.9325≈287.93(roundingdown)②0.03785551≈0.037856(roundingup)③8.000033≈8.0000(roundingdown)④2.718281828459045≈2.7183(roundingup)⑤2.765450≈2.7655(roundingup)2023/11/1014Theorem1.1Suppose

withnsignificantdigits,thentherelativeerrorboundofx*Theorem1.2Iftherelativeerrorboundofisthenxhasatleastnsignificantdigits.2023/11/1015§1.2PropagationofErrorsWhenweuseinaccuratenumberstocalculate,howdotheseinaccuraciespropagatethroughthecalculations?2023/11/1016Eg.1.8Findtheboundsforthepropagationinaddingtwonumbers.ForexampleifoneiscalculatingX+Ywhere

X=1.5±0.05

Y=3.4±0.04SolutionMaximumpossiblevalueofX=1.55andY=3.44MaximumpossiblevalueofX+Y=1.55+3.44=4.99MinimumpossiblevalueofX=1.45andY=3.36.MinimumpossiblevalueofX+Y=1.45+3.36=4.81Hence 4.81≤X+Y≤4.99.2023/11/1017PropagationofErrorsInFormulasIfisafunctionofseveralvariablesthenthemaximumpossiblevalueoftheerrorinis2023/11/1018Eg.1.9Thestraininanaxialmemberofasquarecross-sectionisgivenbyGivenFindthemaximumpossibleerrorinthemeasuredstrain.2023/11/1019Solution

2023/11/1020ThusHence2023/11/1021Eg.10Subtractionofnumbersthatarenearlyequalcancreateunwantedinaccuracies.Usingtheformulaforerrorpropagation,showthatthisistrue.SolutionLetThenSotherelativechangeis2023/11/1022Eg.11Forexampleif=0.6667=66.67%2023/11/10231.3.1Avoidthesubtractionofnearlyequalnumbers

Thesubtractionofnearlyequalnumberswilllosssignificantdigitslargely,sothisoperationleadstoalargerrelativeerror.Eg.1.12Computetheapproximationtox*-y*using4-digits.

①x=18.496;y=17.208②x=18.496;y=18.493Solution.①Theapproximationswith4-digitsto

x*andy*usingtheRoundingRuleareasfollows:

x=18.50;y=17.21

x-y=

18.50-17.21=1.29Infact

x*-y*=18.496-17.208=1.288§3HowtoAvoidtheLossofAccuracy2023/11/1024Absoluteerror

Relativeerror

②Theapproximationswith4-digitsto

x*andy*usingtheRoundingRuleareasfollows:

x=18.50;y=18.49

x-y=

18.50-18.49=0.01infact

x*-y*=18.496-18.493=0.003

Absoluteerror

Relativeerror2023/11/1025Findabettersolution:①moresignificantdigits;②usingabettercomputationform,forexample1.3.2Avoidbignumbers“swallowing”importantsmallnumbers2023/11/1026Eg.1.1.13Tocalculate1-cos0.1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論