版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省云浮達(dá)標(biāo)名校2024屆中考數(shù)學(xué)模擬預(yù)測題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,AD∥BC,AC平分∠BAD,若∠B=40°,則∠C的度數(shù)是()A.40° B.65° C.70° D.80°2.已知拋物線y=ax2﹣(2a+1)x+a﹣1與x軸交于A(x1,0),B(x2,0)兩點,若x1<1,x2>2,則a的取值范圍是()A.a(chǎn)<3 B.0<a<3 C.a(chǎn)>﹣3 D.﹣3<a<03.如圖,在中,點D、E、F分別在邊、、上,且,.下列四種說法:①四邊形是平行四邊形;②如果,那么四邊形是矩形;③如果平分,那么四邊形是菱形;④如果且,那么四邊形是菱形.其中,正確的有()個A.1 B.2 C.3 D.44.的相反數(shù)是()A. B.2 C. D.5.若x=-2是關(guān)于x的一元二次方程x2+ax-a2=0的一個根,則a的值為()A.-1或4 B.-1或-4C.1或-4 D.1或46.如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度約為()(精確到0.1米,參考數(shù)據(jù):)A.30.6米 B.32.1米 C.37.9米 D.39.4米7.如圖所示的幾何體,它的左視圖與俯視圖都正確的是()A. B. C. D.8.如圖,在矩形ABCD中,AB=2a,AD=a,矩形邊上一動點P沿A→B→C→D的路徑移動.設(shè)點P經(jīng)過的路徑長為x,PD2=y,則下列能大致反映y與x的函數(shù)關(guān)系的圖象是()A. B.C. D.9.若一次函數(shù)的圖象經(jīng)過第一、二、四象限,則下列不等式一定成立的是()A. B. C. D.10.若一組數(shù)據(jù)1、、2、3、4的平均數(shù)與中位數(shù)相同,則不可能是下列選項中的()A.0 B.2.5 C.3 D.511.已知某校女子田徑隊23人年齡的平均數(shù)和中位數(shù)都是13歲,但是后來發(fā)現(xiàn)其中一位同學(xué)的年齡登記錯誤,將14歲寫成15歲,經(jīng)重新計算后,正確的平均數(shù)為a歲,中位數(shù)為b歲,則下列結(jié)論中正確的是()A.a(chǎn)<13,b=13B.a(chǎn)<13,b<13C.a(chǎn)>13,b<13D.a(chǎn)>13,b=1312.已知關(guān)于x的方程x2﹣4x+c+1=0有兩個相等的實數(shù)根,則常數(shù)c的值為(
)A.﹣1 B.0 C.1 D.3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.把多項式x3﹣25x分解因式的結(jié)果是_____14.如圖,有一直徑是的圓形鐵皮,現(xiàn)從中剪出一個圓周角是90°的最大扇形ABC,用該扇形鐵皮圍成一個圓錐,所得圓錐的底面圓的半徑為米.15.如果x+y=5,那么代數(shù)式的值是______.16.小明擲一枚均勻的骰子,骰子的六個面上分別刻有1,2,3,4,5,6點,得到的點數(shù)為奇數(shù)的概率是.17.如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P與點B,C都不重合),現(xiàn)將△PCD沿直線PD折疊,使點C落到點F處;過點P作∠BPF的角平分線交AB于點E.設(shè)BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是()18.計算:-=________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖所示,在?ABCD中,E是CD延長線上的一點,BE與AD交于點F,DE=CD.(1)求證:△ABF∽△CEB;(2)若△DEF的面積為2,求?ABCD的面積.20.(6分)如圖,在邊長為1個單位長度的小正方形網(wǎng)格中:(1)畫出△ABC向上平移6個單位長度,再向右平移5個單位長度后的△A1B1C1.(2)以點B為位似中心,將△ABC放大為原來的2倍,得到△A2B2C2,請在網(wǎng)格中畫出△A2B2C2.(3)求△CC1C2的面積.21.(6分)如圖,已知拋物線經(jīng)過原點o和x軸上一點A(4,0),拋物線頂點為E,它的對稱軸與x軸交于點D.直線y=﹣2x﹣1經(jīng)過拋物線上一點B(﹣2,m)且與y軸交于點C,與拋物線的對稱軸交于點F.(1)求m的值及該拋物線對應(yīng)的解析式;(2)P(x,y)是拋物線上的一點,若S△ADP=S△ADC,求出所有符合條件的點P的坐標(biāo);(3)點Q是平面內(nèi)任意一點,點M從點F出發(fā),沿對稱軸向上以每秒1個單位長度的速度勻速運動,設(shè)點M的運動時間為t秒,是否能使以Q、A、E、M四點為頂點的四邊形是菱形.若能,請直接寫出點M的運動時間t的值;若不能,請說明理由.22.(8分)如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A、B、C均在格點上.(I)AC的長等于_____.(II)若AC邊與網(wǎng)格線的交點為P,請找出兩條過點P的直線來三等分△ABC的面積.請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出這兩條直線,并簡要說明這兩條直線的位置是如何找到的_____(不要求證明).23.(8分)平面直角坐標(biāo)系xOy中(如圖),已知拋物線y=ax2+bx+3與y軸相交于點C,與x軸正半軸相交于點A,OA=OC,與x軸的另一個交點為B,對稱軸是直線x=1,頂點為P.(1)求這條拋物線的表達(dá)式和頂點P的坐標(biāo);(2)拋物線的對稱軸與x軸相交于點M,求∠PMC的正切值;(3)點Q在y軸上,且△BCQ與△CMP相似,求點Q的坐標(biāo).24.(10分)已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=40°.(1)如圖1,若D為弧AB的中點,求∠ABC和∠ABD的度數(shù);(2)如圖2,過點D作⊙O的切線,與AB的延長線交于點P,若DP∥AC,求∠OCD的度數(shù).25.(10分)閱讀與應(yīng)用:閱讀1:a、b為實數(shù),且a>0,b>0,因為,所以,從而(當(dāng)a=b時取等號).閱讀2:函數(shù)(常數(shù)m>0,x>0),由閱讀1結(jié)論可知:,所以當(dāng)即時,函數(shù)的最小值為.閱讀理解上述內(nèi)容,解答下列問題:問題1:已知一個矩形的面積為4,其中一邊長為x,則另一邊長為,周長為,求當(dāng)x=__________時,周長的最小值為__________.問題2:已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),當(dāng)x=__________時,的最小值為__________.問題3:某民辦學(xué)習(xí)每天的支出總費用包含以下三個部分:一是教職工工資6400元;二是學(xué)生生活費每人10元;三是其他費用.其中,其他費用與學(xué)生人數(shù)的平方成正比,比例系數(shù)為0.1.當(dāng)學(xué)校學(xué)生人數(shù)為多少時,該校每天生均投入最低?最低費用是多少元?(生均投入=支出總費用÷學(xué)生人數(shù))26.(12分)規(guī)定:不相交的兩個函數(shù)圖象在豎直方向上的最短距離為這兩個函數(shù)的“親近距離”(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點與交點之間的距離,你同意他的看法嗎?請說明理由.(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.27.(12分)某高科技產(chǎn)品開發(fā)公司現(xiàn)有員工50名,所有員工的月工資情況如下表:員工管理人員普通工作人員人員結(jié)構(gòu)總經(jīng)理部門經(jīng)理科研人員銷售人員高級技工中級技工勤雜工員工數(shù)(名)1323241每人月工資(元)2100084002025220018001600950請你根據(jù)上述內(nèi)容,解答下列問題:該公司“高級技工”有名;所有員工月工資的平均數(shù)x為2500元,中位數(shù)為元,眾數(shù)為元;小張到這家公司應(yīng)聘普通工作人員.請你回答右圖中小張的問題,并指出用(2)中的哪個數(shù)據(jù)向小張介紹員工的月工資實際水平更合理些;去掉四個管理人員的工資后,請你計算出其他員工的月平均工資(結(jié)果保留整數(shù)),并判斷能否反映該公司員工的月工資實際水平.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】
根據(jù)平行線性質(zhì)得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度數(shù).【題目詳解】解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=40°,∴∠BAD=140°,∵AC平分∠DAB,∴∠DAC=∠BAD=70°,∵A∥BC,∴∠C=∠DAC=70°,故選C.【題目點撥】本題考查了平行線性質(zhì)和角平分線定義,關(guān)鍵是求出∠DAC或∠BAC的度數(shù).2、B【解題分析】由已知拋物線求出對稱軸,解:拋物線:,對稱軸,由判別式得出a的取值范圍.,,∴,①,.②由①②得.故選B.3、D【解題分析】
先由兩組對邊分別平行的四邊形為平行四邊形,根據(jù)DE∥CA,DF∥BA,得出AEDF為平行四邊形,得出①正確;當(dāng)∠BAC=90°,根據(jù)推出的平行四邊形AEDF,利用有一個角為直角的平行四邊形為矩形可得出②正確;若AD平分∠BAC,得到一對角相等,再根據(jù)兩直線平行內(nèi)錯角相等又得到一對角相等,等量代換可得∠EAD=∠EDA,利用等角對等邊可得一組鄰邊相等,根據(jù)鄰邊相等的平行四邊形為菱形可得出③正確;由AB=AC,AD⊥BC,根據(jù)等腰三角形的三線合一可得AD平分∠BAC,同理可得四邊形AEDF是菱形,④正確,進(jìn)而得到正確說法的個數(shù).【題目詳解】解:∵DE∥CA,DF∥BA,∴四邊形AEDF是平行四邊形,選項①正確;若∠BAC=90°,∴平行四邊形AEDF為矩形,選項②正確;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四邊形AEDF為菱形,選項③正確;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四邊形AEDF為菱形,選項④正確,則其中正確的個數(shù)有4個.故選D.【題目點撥】此題考查了平行四邊形的定義,菱形、矩形的判定,涉及的知識有:平行線的性質(zhì),角平分線的定義,以及等腰三角形的判定與性質(zhì),熟練掌握平行四邊形、矩形及菱形的判定與性質(zhì)是解本題的關(guān)鍵.4、D【解題分析】
因為-+=0,所以-的相反數(shù)是.故選D.5、C【解題分析】試題解析:∵x=-2是關(guān)于x的一元二次方程的一個根,
∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,
整理,得(a+2)(a-1)=0,
解得a1=-2,a2=1.
即a的值是1或-2.
故選A.點睛:一元二次方程的解的定義:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因為只含有一個未知數(shù)的方程的解也叫做這個方程的根,所以,一元二次方程的解也稱為一元二次方程的根.6、D【解題分析】解:延長AB交DC于H,作EG⊥AB于G,如圖所示,則GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,設(shè)BH=x米,則CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故選D.7、D【解題分析】試題分析:該幾何體的左視圖是邊長分別為圓的半徑和直徑的矩形,俯視圖是邊長分別為圓的直徑和半徑的矩形,故答案選D.考點:D.8、D【解題分析】解:(1)當(dāng)0≤t≤2a時,∵,AP=x,∴;(2)當(dāng)2a<t≤3a時,CP=2a+a﹣x=3a﹣x,∵,∴=;(3)當(dāng)3a<t≤5a時,PD=2a+a+2a﹣x=5a﹣x,∵=y,∴=;綜上,可得,∴能大致反映y與x的函數(shù)關(guān)系的圖象是選項D中的圖象.故選D.9、D【解題分析】∵一次函數(shù)y=ax+b的圖象經(jīng)過第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A錯誤,a?b<0,故B錯誤,ab<0,故C錯誤,<0,故D正確.故選D.10、C【解題分析】
解:這組數(shù)據(jù)1、a、2、1、4的平均數(shù)為:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)將這組數(shù)據(jù)從小到大的順序排列后為a,1,2,1,4,中位數(shù)是2,平均數(shù)是0.2a+2,∵這組數(shù)據(jù)1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=2,解得a=0,符合排列順序.(2)將這組數(shù)據(jù)從小到大的順序排列后為1,a,2,1,4,中位數(shù)是2,平均數(shù)是0.2a+2,∵這組數(shù)據(jù)1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=2,解得a=0,不符合排列順序.(1)將這組數(shù)據(jù)從小到大的順序排列后1,2,a,1,4,中位數(shù)是a,平均數(shù)是0.2a+2,∵這組數(shù)據(jù)1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=a,解得a=2.5,符合排列順序.(4)將這組數(shù)據(jù)從小到大的順序排列后為1,2,1,a,4,中位數(shù)是1,平均數(shù)是0.2a+2,∵這組數(shù)據(jù)1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=1,解得a=5,不符合排列順序.(5)將這組數(shù)據(jù)從小到大的順序排列為1,2,1,4,a,中位數(shù)是1,平均數(shù)是0.2a+2,∵這組數(shù)據(jù)1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=1,解得a=5;符合排列順序;綜上,可得:a=0、2.5或5,∴a不可能是1.故選C.【題目點撥】本題考查中位數(shù);算術(shù)平均數(shù).11、A【解題分析】試題解析:∵原來的平均數(shù)是13歲,∴13×23=299(歲),∴正確的平均數(shù)a=299-12∵原來的中位數(shù)13歲,將14歲寫成15歲,最中間的數(shù)還是13歲,∴b=13;故選A.考點:1.平均數(shù);2.中位數(shù).12、D【解題分析】分析:由于方程x2﹣4x+c+1=0有兩個相等的實數(shù)根,所以?=b2﹣4ac=0,可得關(guān)于c的一元一次方程,然后解方程求出c的值.詳解:由題意得,(-4)2-4(c+1)=0,c=3.故選D.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac:當(dāng)?>0時,一元二次方程有兩個不相等的實數(shù)根;當(dāng)?=0時,一元二次方程有兩個相等的實數(shù)根;當(dāng)?<0時,一元二次方程沒有實數(shù)根.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x(x+5)(x﹣5).【解題分析】分析:首先提取公因式x,再利用平方差公式分解因式即可.詳解:x3-25x=x(x2-25)=x(x+5)(x-5).故答案為x(x+5)(x-5).點睛:此題主要考查了提取公因式法以及公式法分解因式,正確應(yīng)用公式是解題關(guān)鍵.14、【解題分析】
先利用△ABC為等腰直角三角形得到AB=1,再設(shè)圓錐的底面圓的半徑為r,則根據(jù)圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和弧長公式得到2πr=,然后解方程即可.【題目詳解】∵⊙O的直徑BC=,
∴AB=BC=1,
設(shè)圓錐的底面圓的半徑為r,
則2πr=,解得r=,
即圓錐的底面圓的半徑為米故答案為.15、1【解題分析】
先將分式化簡,然后將x+y=1代入即可求出答案【題目詳解】當(dāng)x+y=1時,原式=x+y=1,故答案為:1.【題目點撥】本題考查分式的化簡求值,解題的關(guān)鍵是利用運用分式的運算法則求解代數(shù)式.16、.【解題分析】
根據(jù)題意可知,擲一次骰子有6個可能結(jié)果,而點數(shù)為奇數(shù)的結(jié)果有3個,所以點數(shù)為奇數(shù)的概率為.考點:概率公式.17、C【解題分析】
先證明△BPE∽△CDP,再根據(jù)相似三角形對應(yīng)邊成比例列出式子變形可得.【題目詳解】由已知可知∠EPD=90°,∴∠BPE+∠DPC=90°,∵∠DPC+∠PDC=90°,∴∠CDP=∠BPE,∵∠B=∠C=90°,∴△BPE∽△CDP,∴BP:CD=BE:CP,即x:3=y:(5-x),∴y=(0<x<5);故選C.考點:1.折疊問題;2.相似三角形的判定和性質(zhì);3.二次函數(shù)的圖象.18、2【解題分析】試題解析:原式故答案為三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)16【解題分析】試題分析:(1)要證△ABF∽△CEB,需找出兩組對應(yīng)角相等;已知了平行四邊形的對角相等,再利用AB∥CD,可得一對內(nèi)錯角相等,則可證.(2)由于△DEF∽△EBC,可根據(jù)兩三角形的相似比,求出△EBC的面積,也就求出了四邊形BCDF的面積.同理可根據(jù)△DEF∽△AFB,求出△AFB的面積.由此可求出?ABCD的面積.試題解析:(1)證明:∵四邊形ABCD是平行四邊形∴∠A=∠C,AB∥CD∴∠ABF=∠CEB∴△ABF∽△CEB(2)解:∵四邊形ABCD是平行四邊形∴AD∥BC,AB平行且等于CD∴△DEF∽△CEB,△DEF∽△ABF∵DE=CD∴,∵S△DEF=2S△CEB=18,S△ABF=8,∴S四邊形BCDF=S△BCE-S△DEF=16∴S四邊形ABCD=S四邊形BCDF+S△ABF=16+8=1.考點:1.相似三角形的判定與性質(zhì);2.三角形的面積;3.平行四邊形的性質(zhì).20、(1)見解析(2)見解析(3)9【解題分析】試題分析:(1)將△ABC向上平移6個單位長度,再向右平移5個單位長度后的△A1B1C1,如圖所示;(2)以點B為位似中心,將△ABC放大為原來的2倍,得到△A2B2C2,如圖所示.試題解析:(1)根據(jù)題意畫出圖形,△A1B1C1為所求三角形;(2)根據(jù)題意畫出圖形,△A2B2C2為所求三角形.考點:1.作圖-位似變換,2.作圖-平移變換21、(1);(2)(,1)(,1);(3)存在,,,,【解題分析】試題分析:(1)將x=-2代入y=-2x-1即可求得點B的坐標(biāo),根據(jù)拋物線過點A、O、B即可求出拋物線的方程.(2)根據(jù)題意,可知△ADP和△ADC的高相等,即點P縱坐標(biāo)的絕對值為1,所以點P的縱坐標(biāo)為,分別代入中求解,即可得到所有符合題意的點P的坐標(biāo).(3)由拋物線的解析式為,得頂點E(2,﹣1),對稱軸為x=2;點F是直線y=﹣2x﹣1與對稱軸x=2的交點,求出F(2,﹣1),DF=1.又由A(4,0),根據(jù)勾股定理得.然后分4種情況求解.點睛:(1)首先求出點B的坐標(biāo)和m的值,然后利用待定系數(shù)法求出拋物線的解析式;(2)△ADP與△ADC有共同的底邊AD,因為面積相等,所以AD邊上的高相等,即為1;從而得到點P的縱坐標(biāo)為1,再利用拋物線的解析式求出點P的縱坐標(biāo);(3)如解答圖所示,在點M的運動過程中,依次出現(xiàn)四個菱形,注意不要漏解.針對每一個菱形,分別進(jìn)行計算,求出線段MF的長度,從而得到運動時間t的值.22、作a∥b∥c∥d,可得交點P與P′【解題分析】
(1)根據(jù)勾股定理計算即可;(2)利用平行線等分線段定理即可解決問題.【題目詳解】(I)AC==,故答案為:;(II)如圖直線l1,直線l2即為所求;
理由:∵a∥b∥c∥d,且a與b,b與c,c與d之間的距離相等,∴CP=PP′=P′A,∴S△BCP=S△ABP′=S△ABC.故答案為作a∥b∥c∥d,可得交點P與P′.【題目點撥】本題考查作圖-應(yīng)用與設(shè)計,勾股定理,平行線等分線段定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考常考題型.23、(1)(1,4)(2)(0,)或(0,-1)【解題分析】試題分析:(1)先求得點C的坐標(biāo),再由OA=OC得到點A的坐標(biāo),再根據(jù)拋物線的對稱性得到點B的坐標(biāo),利用待定系數(shù)法求得解析式后再進(jìn)行配方即可得到頂點坐標(biāo);(2)由OC//PM,可得∠PMC=∠MCO,求tan∠MCO即可;(3)分情況進(jìn)行討論即可得.試題解析:(1)當(dāng)x=0時,拋物線y=ax2+bx+3=3,所以點C坐標(biāo)為(0,3),∴OC=3,∵OA=OC,∴OA=3,∴A(3,0),∵A、B關(guān)于x=1對稱,∴B(-1,0),∵A、B在拋物線y=ax2+bx+3上,∴,∴,∴拋物線解析式為:y=-x2+2x+3=-(x-1)2+4,∴頂點P(1,4);(2)由(1)可知P(1,4),C(0,3),所以M(1,0),∴OC=3,OM=1,∵OC//PM,∴∠PMC=∠MCO,∴tan∠PMC=tan∠MCO==;(3)Q在C點的下方,∠BCQ=∠CMP,CM=,PM=4,BC=,∴或,∴CQ=或4,∴Q1(0,),Q2(0,-1).24、(1)45°;(2)26°.【解題分析】
(1)根據(jù)圓周角和圓心角的關(guān)系和圖形可以求得∠ABC和∠ABD的大??;(2)根據(jù)題意和平行線的性質(zhì)、切線的性質(zhì)可以求得∠OCD的大?。绢}目詳解】(1)∵AB是⊙O的直徑,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D為弧AB的中點,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)連接OD,∵DP切⊙O于點D,∴OD⊥DP,即∠ODP=90°,∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一個外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.【題目點撥】本題考查切線的性質(zhì)、圓周角定理,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.25、問題1:28問題2:38問題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,生均投入為y元,依題意得:,因為x>0,所以,當(dāng)即x=800時,y取最小值2.答:當(dāng)學(xué)校學(xué)生人數(shù)為800人時,該校每天生均投入最低,最低費用是2元.【解題分析】試題分析:問題1:當(dāng)時,周長有最小值,求x的值和周長最小值;問題2:變形,由當(dāng)x+1=時,的最小值,求出x值和的最小值;問題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,生均投入為y元,根據(jù)生均投入=支出總費用÷學(xué)生人數(shù),列出關(guān)系式,根據(jù)前兩題解法,從而求解.試題解析:問題1:∵當(dāng)(x>0)時,周長有最小值,∴x=2,∴當(dāng)x=2時,有最小值為=3.即當(dāng)x=2時,周長的最小值為2×3=8;問題2:∵y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),∴,∵當(dāng)x+1=(x>-1)時,的最小值,∴x=3,∴x=3時,有最小值為3+3=8,即當(dāng)x=3時,的最小值為8;問題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,則生均投入y元,依題意得,因為x>0,所以,當(dāng)即x=800時,y取最小值2.答:當(dāng)學(xué)校學(xué)生人數(shù)為800時,該校每天生均投入最低,最低費用是2元.26、(1)2;(2)不同意他的看法,理由詳見解析;(3)c=1.【解題分析】
(1)把y=x2﹣2x+3配成頂點式得到拋物線上的點到x軸的最短距離,然后根據(jù)題意解決問題;(2)如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年益陽職業(yè)技術(shù)學(xué)院輔導(dǎo)員考試筆試真題匯編附答案
- 2024年漯河市特崗教師筆試真題題庫附答案
- 2024年湖北汽車工業(yè)學(xué)院輔導(dǎo)員考試筆試題庫附答案
- 2024年陽江市稅務(wù)系統(tǒng)遴選考試真題匯編附答案
- 2024年谷城縣輔警招聘考試真題附答案
- 2024年石柱縣特崗教師招聘筆試真題題庫附答案
- 2025北京通州區(qū)招聘社區(qū)工作者和社區(qū)專職黨務(wù)工作者100人備考題庫附答案
- 2025年上海電影藝術(shù)職業(yè)學(xué)院輔導(dǎo)員考試筆試真題匯編附答案
- 2025北京大興區(qū)興豐街道招聘臨時輔助用工人員17人備考題庫附答案
- 2025年九江科技職業(yè)大學(xué)輔導(dǎo)員考試筆試題庫附答案
- 2025年遼鐵單招考試題目及答案
- 醫(yī)療行業(yè)數(shù)據(jù)安全事件典型案例分析
- 2026年生物醫(yī)藥創(chuàng)新金融項目商業(yè)計劃書
- 湖南名校聯(lián)考聯(lián)合體2026屆高三年級1月聯(lián)考化學(xué)試卷+答案
- 龜?shù)慕馄收n件
- 山東省濰坊市2024-2025學(xué)年二年級上學(xué)期期末數(shù)學(xué)試題
- 空氣源熱泵供熱工程施工方案
- 2026屆濰坊市重點中學(xué)高一化學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析
- 超皮秒祛斑課件
- 2025年高爾基《童年》閱讀測試+答案
- 跟單轉(zhuǎn)正述職報告
評論
0/150
提交評論