廣東省陽東廣雅學(xué)校2023-2024學(xué)年高一上數(shù)學(xué)期末檢測模擬試題含解析_第1頁
廣東省陽東廣雅學(xué)校2023-2024學(xué)年高一上數(shù)學(xué)期末檢測模擬試題含解析_第2頁
廣東省陽東廣雅學(xué)校2023-2024學(xué)年高一上數(shù)學(xué)期末檢測模擬試題含解析_第3頁
廣東省陽東廣雅學(xué)校2023-2024學(xué)年高一上數(shù)學(xué)期末檢測模擬試題含解析_第4頁
廣東省陽東廣雅學(xué)校2023-2024學(xué)年高一上數(shù)學(xué)期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省陽東廣雅學(xué)校2023-2024學(xué)年高一上數(shù)學(xué)期末檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知某幾何體的三視圖如圖所示,根據(jù)圖中標出的尺寸單位:,可得這個幾何體得體積是A. B.C.2 D.42.如下圖所示,在正方體中,下列結(jié)論正確的是A.直線與直線所成的角是 B.直線與平面所成的角是C.二面角的大小是 D.直線與平面所成的角是3.下列說法正確的是A.截距相等的直線都可以用方程表示B.方程不能表示平行軸的直線C.經(jīng)過點,傾斜角為直線方程為D.經(jīng)過兩點,的直線方程為4.如圖,在中,為線段上的一點,且,則A. B.C. D.5.若,則的值為A.0 B.1C.-1 D.26.下列函數(shù)中,最小正周期為且圖象關(guān)于原點對稱的函數(shù)是()A. B.C. D.7.已知函數(shù),則下列結(jié)論正確的是()A.B.的值域為C.在上單調(diào)遞減D.的圖象關(guān)于點對稱8.若直線過點且傾角為,若直線與軸交于點,則點的坐標為()A. B.C. D.9.若且則的值是.A. B.C. D.10.已知方程,在區(qū)間(-2,0)上的解可用二分法求出,則的取值范圍是A.(-4,0) B.(0,4)C.[-4,0] D.[0,4]二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)b>0,二次函數(shù)y=ax2+bx+a2-1的圖象為下列之一,則a的值為______________12.已知函數(shù)的值域為,則實數(shù)的取值范圍是________13.不等式對任意實數(shù)都成立,則實數(shù)的取值范圍是__________14.一個扇形的中心角為3弧度,其周長為10,則該扇形的面積為__________15.若函數(shù)是定義在上的嚴格增函數(shù),且對一切x,滿足,則不等式的解集為___________.16.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,其中有這樣一個問題:“今有宛田,下周三十步,徑十六步.問為田幾何?”其意思為:“有一塊扇形的田,弧長為30步,其所在圓的直徑為16步,問這塊田的面積是多少平方步?”該問題的答案為___________平方步.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)是實數(shù),(1)證明:f(x)是增函數(shù);(2)試確定的值,使f(x)為奇函數(shù)18.已知函數(shù)是定義在上的奇函數(shù).(1)求實數(shù)的值;(2)解關(guān)于的不等式;(3)是否存在實數(shù),使得函數(shù)在區(qū)間上的取值范圍是?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.19.某快遞公司在某市的貨物轉(zhuǎn)運中心,擬引進智能機器人分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購買x臺機器人的總成本萬元.(1)若使每臺機器人的平均成本最低,問應(yīng)買多少臺?(2)現(xiàn)按(1)中的數(shù)量購買機器人,需要安排m人將郵件放在機器人上,機器人將郵件送達指定落袋格口完成分揀,經(jīng)實驗知,每臺機器人的日平均分揀量(單位:件),已知傳統(tǒng)人工分揀每人每日的平均分揀量為1200件,問引進機器人后,日平均分揀量達最大值時,用人數(shù)量比引進機器人前的用人數(shù)量最多可減少多少?20.已知關(guān)于的不等式(Ⅰ)解該不等式;(Ⅱ)定義區(qū)間的長度為,若,求該不等式解集表示的區(qū)間長度的最大值21.在中,,且與的夾角為,.(1)求的值;(2)若,,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】先根據(jù)三視圖得到幾何體的形狀,然后再根據(jù)條件中的數(shù)據(jù)求得幾何體的體積【詳解】由三視圖可知該幾何體是一個以俯視圖為底面的四棱錐,如下圖中的四棱錐由題意得其底面面積,高,故幾何體的體積故選B【點睛】由三視圖還原幾何體的方法(1)還原后的幾何體一般為較熟悉的柱、錐、臺、球的組合體(2)注意圖中實、虛線,實際是原幾何體中的可視線與被遮擋線(3)想象原形,并畫出草圖后進行三視圖還原,把握三視圖和幾何體之間的關(guān)系,與所給三視圖比較,通過調(diào)整準確畫出原幾何體2、D【解析】選項,連接,,因為,所以直線與直線所成的角為,故錯;選項,因為平面,故為直線與平面所成的角,根據(jù)題意;選項,因為平面,所以,故二面角的平面角為,故錯;用排除法,選故選:D3、D【解析】A錯誤,比如過原點的直線,橫縱截距均為0,這時就不能有選項中的式子表示;B當m=0時,表示的就是和y軸平行的直線,故選項不對C不正確,當直線的傾斜角為90度時,正切值無意義,因此不能表示.故不正確D根據(jù)直線的兩點式得到斜率為,再代入一個點得到方程為:故答案為D4、D【解析】根據(jù)得到,根據(jù)題中條件,即可得出結(jié)果.【詳解】由已知得,所以,又,所以,故選D.【點睛】本題主要考查平面向量基本定理的應(yīng)用,熟記平面向量基本定理即可,屬于常考題型.5、A【解析】由題意得a不等于零,或,所以或,即的值為0,選A.6、A【解析】求出函數(shù)的周期,函數(shù)的奇偶性,判斷求解即可【詳解】解:y=cos(2x)=﹣sin2x,是奇函數(shù),函數(shù)的周期為:π,滿足題意,所以A正確y=sin(2x)=cos2x,函數(shù)是偶函數(shù),周期為:π,不滿足題意,所以B不正確;y=sin2x+cos2xsin(2x),函數(shù)是非奇非偶函數(shù),周期為π,所以C不正確;y=sinx+cosxsin(x),函數(shù)是非奇非偶函數(shù),周期為2π,所以D不正確;故選A考點:三角函數(shù)的性質(zhì).7、C【解析】利用分段函數(shù)化簡函數(shù)解析式,再利用函數(shù)圖像和性質(zhì),從而得出結(jié)論.【詳解】故函數(shù)的周期為,即,故排除A,顯然函數(shù)的值域為,故排除B,在上,函數(shù)為單調(diào)遞減,故C正確,根據(jù)函數(shù)的圖像特征,可知圖像不關(guān)于點對稱,故排除D.故選:C.【點睛】本題解題時主要利用分段函數(shù)化簡函數(shù)的解析式,在化簡的過程中注意函數(shù)的定義域,以及充分利用函數(shù)的圖像和性質(zhì)解題.8、C【解析】利用直線過的定點和傾斜角寫出直線的方程,求出與軸的交點,得出答案【詳解】直線過點且傾角為,則直線方程為,化簡得令,解得,點的坐標為故選:C【點睛】本題考查點斜式直線方程的應(yīng)用,考查學(xué)生計算能力,屬于基礎(chǔ)題9、C【解析】由題設(shè),又,則,所以,,應(yīng)選答案C點睛:角變換是三角變換中的精髓,也是等價化歸與轉(zhuǎn)化數(shù)學(xué)思想的具體運用,求解本題的關(guān)鍵是巧妙地將一個角變?yōu)橐阎獌山堑牟?,再運用三角變換公式進行求解.10、B【解析】根據(jù)零點存在性定理,可得,求解即可.【詳解】因為方程在區(qū)間(-2,0)上的解可用二分法求出,所以有,解得.故選B【點睛】本題主要考查零點的存在性定理,熟記定理即可,屬于基礎(chǔ)題型.二、填空題:本大題共6小題,每小題5分,共30分。11、-1【解析】根據(jù)題中條件可先排除①,②兩個圖象,然后根據(jù)③,④兩個圖象都經(jīng)過原點可求出a的兩個值,再根據(jù)二次函數(shù)圖象的開口方向就可確定a的值.【詳解】∵b>0∴二次函數(shù)的對稱軸不能為y軸,∴可排除掉①,②兩個圖象∵③,④兩個圖象都經(jīng)過原點,∴a2﹣1=0,∴a=±1∵當a=1時,二次函數(shù)圖象的開口向上,對稱軸在y軸左方,∴第四個圖象也不對,∴a=﹣1,故答案為:-1【點睛】本題考查了二次函數(shù)的圖象和性質(zhì),做題時注意題中條件的利用,合理地利用排除法解決選擇題12、【解析】將題意等價于的值域包含,討論和結(jié)合化簡即可.【詳解】解:要使函數(shù)的值域為則的值域包含①當即時,值域為包含,故符合條件②當時綜上,實數(shù)的取值范圍是故答案為:【點睛】一元二次不等式??碱}型:(1)一元二次不等式在上恒成立問題:解決此類問題常利用一元二次不等式在上恒成立的條件,注意如果不等式恒成立,不要忽略時的情況.(2)在給定區(qū)間上的恒成立問題求解方法:若在集合中恒成立,即集合是不等式的解集的子集,可以先求解集,再由子集的含義求解參數(shù)的值(或范圍).13、【解析】利用二次不等式與相應(yīng)的二次函數(shù)的關(guān)系,易得結(jié)果.詳解】∵不等式對任意實數(shù)都成立,∴∴<k<2故答案為【點睛】(1)二次函數(shù)圖象與x軸交點的橫坐標、二次不等式解集的端點值、一元二次方程的解是同一個量的不同表現(xiàn)形式(2)二次函數(shù)、二次方程與二次不等式統(tǒng)稱“三個二次”,它們常結(jié)合在一起,而二次函數(shù)又是“三個二次”的核心,通過二次函數(shù)的圖象貫穿為一體.有關(guān)二次函數(shù)的問題,利用數(shù)形結(jié)合的方法求解,密切聯(lián)系圖象是探求解題思路的有效方法14、6【解析】利用弧長公式以及扇形周長公式即可解出弧長和半徑,再利用扇形面積公式即可求解.【詳解】設(shè)扇形的半徑為,弧長為,則,解得,所以,答案為6.【點睛】主要考查弧長公式、扇形的周長公式以及面積公式,屬于基礎(chǔ)題.15、【解析】根據(jù)題意,將問題轉(zhuǎn)化為,,再根據(jù)單調(diào)性解不等式即可得答案.【詳解】解:因為函數(shù)對一切x,滿足,所以,,令,則,即,所以等價于,因為函數(shù)是定義在上的嚴格增函數(shù),所以,解得所以不等式的解集為故答案為:16、120【解析】利用扇形的面積公式求解.【詳解】由題意得:扇形弧長為30,半徑為8,所以扇形的面積為:,故答案為:120三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)1【解析】(1)設(shè)x1、x2∈R且x1<x2,用作差法,有f(x1)﹣f(x2)=,結(jié)合指數(shù)函數(shù)的單調(diào)性分析可得f(x1)﹣f(x2)<0,可得f(x)的單調(diào)性且與a的值無關(guān);(2)根據(jù)題意,假設(shè)f(x)是奇函數(shù),由奇函數(shù)的定義可得,f(﹣x)=﹣f(x),即a﹣=﹣(a﹣),對其變形,解可得a的值,即可得答案【詳解】(1)證明:設(shè)x1、x2∈R且x1<x2,f(x1)﹣f(x2)=(a﹣)﹣(a﹣)=,又由y=2x在R上為增函數(shù),則>0,>0,由x1<x2,可得﹣<0,則f(x1)﹣f(x2)<0,故f(x)為增函數(shù),與a的值無關(guān),即對于任意a,f(x)在R為增函數(shù);(2)若f(x)為奇函數(shù),且其定義域為R,必有有f(﹣x)=﹣f(x),即a﹣=﹣(a﹣),變形可得2a==2,解可得,a=1,即當a=1時,f(x)為奇函數(shù)【點睛】證明函數(shù)單調(diào)性的一般步驟:(1)取值:在定義域上任取,并且(或);(2)作差:,并將此式變形(要注意變形到能判斷整個式子符號為止);(3)定號:判斷的正負(要注意說理的充分性),必要時要討論;(4)下結(jié)論:根據(jù)定義得出其單調(diào)性.18、(1)1(2)(3)存在,【解析】(1)根據(jù)求解并檢驗即可;(2)先證明函數(shù)單調(diào)性得在上為增函數(shù),再根據(jù)奇偶性與單調(diào)性解不等式即可;(3)根據(jù)題意,將問題方程有兩個不相等的實數(shù)根,再利用換元法,結(jié)合二次方程根的關(guān)系求解即可.【小問1詳解】解:因為是定義在上的奇函數(shù),所以,即,得.此時,,滿足.所以【小問2詳解】解:由(1)知,,且,則.∵,∴,,∴,即,故在上增函數(shù)∴原不等式可化為,即∴,∴∴,∴原不等式的解集為【小問3詳解】解:設(shè)存在實數(shù),使得函數(shù)在區(qū)間上的取值范圍是,則,即,∴方程,即有兩個不相等的實數(shù)根∴方程有兩個不相等的實數(shù)根令,則,故方程有兩個不相等的正根故,解得∴存在實數(shù),使得函數(shù)在區(qū)間上的取值范圍是,其中的取值范圍為.19、(1)300臺;(2)90人.【解析】(1)每臺機器人的平均成本為,化簡后利用基本不等式求最小值;(2)由(1)可知,引進300臺機器人,并根據(jù)分段函數(shù)求300臺機器人日分揀量的最大值,根據(jù)最大值求若人工分揀,所需人數(shù),再與30作差求解.【詳解】(1)由總成本,可得每臺機器人的平均成本.因為.當且僅當,即時,等號成立.∴若使每臺機器人的平均成本最低,則應(yīng)買300臺.(2)引進機器人后,每臺機器人的日平均分揀量為:當時,300臺機器人的日平均分揀量為∴當時,日平均分揀量有最大值144000.當時,日平均分揀量為∴300臺機器人的日平均分揀量的最大值為144000件.若傳統(tǒng)人工分揀144000件,則需要人數(shù)為(人).∴日平均分揀量達最大值時,用人數(shù)量比引進機器人前的用人數(shù)量最多可減少(人).【點睛】關(guān)鍵點點睛:本題的關(guān)鍵是理解題意,根據(jù)實際問題抽象出函數(shù)關(guān)系,并會求最值,本題最關(guān)鍵的一點時會求的最大值.20、(Ⅰ)當時,原不等式的解為,當或時,原不等式的解集為,當或時,原不等式的解為(Ⅱ)【解析】(Ⅰ)原不等式化為,根據(jù)1<a<2,a=1或a=2分類討論,能求出原不等式的解集;(Ⅱ)當a≠1且a≠2時,,由此能求出該不等式解集表示的區(qū)間長度的最大值試題解析:(Ⅰ)原不等式可化為,當,即時,原不等式的解為;當,即或時,原不等式的解集為;當,即或時,原不等式的解為綜上所述,當時,原不等式的解為,當或時,原不等式的解集為,當或時,原不等式的解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論