版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省江陰市南閘實驗校2024屆中考數學最后沖刺模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖所示的四邊形,與選項中的一個四邊形相似,這個四邊形是()A. B. C. D.2.青藏高原是世界上海拔最高的高原,它的面積是2500000平方千米.將2500000用科學記數法表示應為()A. B. C. D.3.如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1254.被譽為“中國天眼”的世界上最大的單口徑球面射電望遠鏡FAST的反射面總面積約為250000m2,則250000用科學記數法表示為()A.25×104m2 B.0.25×106m2 C.2.5×105m2 D.2.5×106m25.﹣的相反數是()A.8 B.﹣8 C. D.﹣6.下列各數中是無理數的是()A.cos60° B. C.半徑為1cm的圓周長 D.7.如圖,在△ABC中,D、E分別是邊AB、AC的中點,若BC=6,則DE的長為()A.2 B.3 C.4 D.68.如圖,小明將一張長為20cm,寬為15cm的長方形紙(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,則剪去的直角三角形的斜邊長為()A.5cm B.12cm C.16cm D.20cm9.如圖,在△ABC中,AC的垂直平分線分別交AC、BC于E,D兩點,EC=4,△ABC的周長為23,則△ABD的周長為()A.13 B.15 C.17 D.1910.若直線y=kx+b圖象如圖所示,則直線y=?bx+k的圖象大致是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.某商品每件標價為150元,若按標價打8折后,再降價10元銷售,仍獲利10%,則該商品每件的進價為_________元.12.在數軸上,點A和點B分別表示數a和b,且在原點的兩側,若=2016,AO=2BO,則a+b=_____13.從﹣2,﹣1,1,2四個數中,隨機抽取兩個數相乘,積為大于﹣4小于2的概率是__.14.函數y=中,自變量x的取值范圍是_____.15.若兩個相似三角形的面積比為1∶4,則這兩個相似三角形的周長比是__________.16.如圖,正△ABC的邊長為2,點A、B在半徑為2的圓上,點C在圓內,將正ΔABC繞點A逆時針針旋轉,當點C第一次落在圓上時,旋轉角的正切值為_______________17.如圖,已知直線m∥n,∠1=100°,則∠2的度數為_____.三、解答題(共7小題,滿分69分)18.(10分)某商場甲、乙、丙三名業(yè)務員2018年前5個月的銷售額(單位:萬元)如下表:月份銷售額人員第1月第2月第3月第4月第5月甲691088乙57899丙5910511(1)根據上表中的數據,將下表補充完整:統(tǒng)計值數值人員平均數(萬元)眾數(萬元)中位數(萬元)方差甲881.76乙7.682.24丙85(2)甲、乙、丙三名業(yè)務員都說自己的銷售業(yè)績好,你贊同誰的說法?請說明理由.19.(5分)如圖①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直徑,⊙O交AC于點D,過點D的直線交BC于點E,交AB的延長線于點P,∠A=∠PDB.(1)求證:PD是⊙O的切線;(2)若AB=4,DA=DP,試求弧BD的長;(3)如圖②,點M是弧AB的中點,連結DM,交AB于點N.若tanA=12,求DN20.(8分)(1)計算:﹣2sin45°+(2﹣π)0﹣()﹣1;(2)先化簡,再求值?(a2﹣b2),其中a=,b=﹣2.21.(10分)如圖,AB是⊙O的直徑,弧CD⊥AB,垂足為H,P為弧AD上一點,連接PA、PB,PB交CD于E.(1)如圖(1)連接PC、CB,求證:∠BCP=∠PED;(2)如圖(2)過點P作⊙O的切線交CD的延長線于點E,過點A向PF引垂線,垂足為G,求證:∠APG=∠F;(3)如圖(3)在圖(2)的條件下,連接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直徑AB.22.(10分)如圖,將矩形ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.(1)求證:△ABF≌△EDF;(2)若AB=6,BC=8,求AF的長.23.(12分)隨著移動計算技術和無線網絡的快速發(fā)展,移動學習方式越來越引起人們的關注,某校計劃將這種學習方式應用到教育學中,從全校1500名學生中隨機抽取了部分學生,對其家庭中擁有的移動設備的情況進行調查,并繪制出如下的統(tǒng)計圖①和圖②,根據相關信息,解答下列問題:本次接受隨機抽樣調查的學生人數為,圖①中m的值為;求本次調查獲取的樣本數據的眾數、中位數和平均數;根據樣本數據,估計該校1500名學生家庭中擁有3臺移動設備的學生人數.24.(14分)如圖所示,拋物線y=x2+bx+c經過A、B兩點,A、B兩點的坐標分別為(﹣1,0)、(0,﹣3).求拋物線的函數解析式;點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標;在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解題分析】
根據勾股定理求出四邊形第四條邊的長度,進而求出四邊形四條邊之比,根據相似多邊形的性質判斷即可.【題目詳解】解:作AE⊥BC于E,則四邊形AECD為矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四邊形ABCD的四條邊之比為1:3:5:5,D選項中,四條邊之比為1:3:5:5,且對應角相等,故選D.【題目點撥】本題考查的是相似多邊形的判定和性質,掌握相似多邊形的對應邊的比相等是解題的關鍵.2、C【解題分析】分析:在實際生活中,許多比較大的數,我們習慣上都用科學記數法表示,使書寫、計算簡便.解答:解:根據題意:2500000=2.5×1.故選C.3、B【解題分析】
根據角平分線的定義推出△ECF為直角三角形,然后根據勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【題目詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故選:B.【題目點撥】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關鍵是首先證明出△ECF為直角三角形.4、C【解題分析】
科學記數法的表示形式為a×10n,其中1≤|a|<10,n為整數.【題目詳解】解:由科學記數法可知:250000m2=2.5×105m2,故選C.【題目點撥】此題考查科學記數法表示較大的數的方法,準確確定a與n值是關鍵.5、C【解題分析】互為相反數的兩個數是指只有符號不同的兩個數,所以的相反數是,故選C.6、C【解題分析】分析:根據“無理數”的定義進行判斷即可.詳解:A選項中,因為,所以A選項中的數是有理數,不能選A;B選項中,因為是無限循環(huán)小數,屬于有理數,所以不能選B;C選項中,因為半徑為1cm的圓的周長是cm,是個無理數,所以可以選C;D選項中,因為,2是有理數,所以不能選D.故選.C.點睛:正確理解無理數的定義:“無限不循環(huán)小數叫做無理數”是解答本題的關鍵.7、B【解題分析】
根據三角形的中位線等于第三邊的一半進行計算即可.【題目詳解】∵D、E分別是△ABC邊AB、AC的中點,∴DE是△ABC的中位線,∵BC=6,∴DE=12故選B.【題目點撥】本題考查了三角形的中位線定理,中位線是三角形中的一條重要線段,由于它的性質與線段的中點及平行線緊密相連,因此,它在幾何圖形的計算及證明中有著廣泛的應用.8、D【解題分析】
解答此題要延長AB、DC相交于F,則BFC構成直角三角形,再用勾股定理進行計算.【題目詳解】延長AB、DC相交于F,則BFC構成直角三角形,運用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.則剪去的直角三角形的斜邊長為1cm.故選D.【題目點撥】本題主要考查了勾股定理的應用,解答此題要延長AB、DC相交于F,構造直角三角形,用勾股定理進行計算.9、B【解題分析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故選B.10、A【解題分析】
根據一次函數y=kx+b的圖象可知k>1,b<1,再根據k,b的取值范圍確定一次函數y=?bx+k圖象在坐標平面內的位置關系,即可判斷.【題目詳解】解:∵一次函數y=kx+b的圖象可知k>1,b<1,
∴-b>1,∴一次函數y=?bx+k的圖象過一、二、三象限,與y軸的正半軸相交,故選:A.【題目點撥】本題考查了一次函數的圖象與系數的關系.函數值y隨x的增大而減小?k<1;函數值y隨x的增大而增大?k>1;一次函數y=kx+b圖象與y軸的正半軸相交?b>1,一次函數y=kx+b圖象與y軸的負半軸相交?b<1,一次函數y=kx+b圖象過原點?b=1.二、填空題(共7小題,每小題3分,滿分21分)11、1【解題分析】試題分析:設該商品每件的進價為x元,則150×80%-10-x=x×10%,解得x=1.即該商品每件的進價為1元.故答案為1.點睛:此題主要考查了一元一次方程的應用,解決本題的關鍵是得到商品售價的等量關系.12、-672或672【解題分析】∵,∴a-b=±2016,∵AO=2BO,A和點B分別在原點的兩側∴a=-2b.當a-b=2016時,∴-2b-b=2016,解得:b=-672.∴a=?2×(-672)=1342,∴a+b=1344+(-672)=672.同理可得當a-b=-2016時,a+b=-672,∴a+b=±672,故答案為:?672或672.13、1【解題分析】
列表得出所有等可能結果,從中找到積為大于-4小于2的結果數,根據概率公式計算可得.【題目詳解】解:列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12種等可能結果,其中積為大于-4小于2的有6種結果,∴積為大于-4小于2的概率為612=1故答案為:12【題目點撥】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點為:概率=所求情況數與總情況數之比.14、x≠﹣.【解題分析】
該函數是分式,分式有意義的條件是分母不等于1,故分母x﹣1≠1,解得x的范圍.【題目詳解】解:根據分式有意義的條件得:2x+3≠1解得:故答案為【題目點撥】本題考查了函數自變量取值范圍的求法.要使得本題函數式子有意義,必須滿足分母不等于1.15、【解題分析】試題分析:∵兩個相似三角形的面積比為1:4,∴這兩個相似三角形的相似比為1:1,∴這兩個相似三角形的周長比是1:1,故答案為1:1.考點:相似三角形的性質.16、3【解題分析】
作輔助線,首先求出∠DAC的大小,進而求出旋轉的角度,即可得出答案.【題目詳解】如圖,分別連接OA、OB、OD;∵OA=OB=2,AB=2,∴△OAB是等腰直角三角形,∴∠OAB=45°;同理可證:∠OAD=45°,∴∠DAB=90°;∵∠CAB=60°,∴∠DAC=90°?60°=30°,∴旋轉角的正切值是33故答案為:33【題目點撥】此題考查等邊三角形的性質,旋轉的性質,點與圓的位置關系,解直角三角形,解題關鍵在于作輔助線.17、80°.【解題分析】
如圖,已知m∥n,根據平行線的性質可得∠1=∠3,再由平角的定義即可求得∠2的度數.【題目詳解】如圖,∵m∥n,∴∠1=∠3,∵∠1=100°,∴∠3=100°,∴∠2=180°﹣100°=80°,故答案為80°.【題目點撥】本題考查了平行線的性質,熟練運用平行線的性質是解決問題的關鍵.三、解答題(共7小題,滿分69分)18、(1)8.2;9;9;6.4;(2)贊同甲的說法.理由見解析.【解題分析】
(1)利用平均數、眾數、中位數的定義和方差的計算公式求解;(2)利用甲的平均數大得到總營業(yè)額高,方差小,營業(yè)額穩(wěn)定進行判斷.【題目詳解】(1)甲的平均數;乙的眾數為9;丙的中位數為9,丙的方差;故答案為8.2;9;9;6.4;(2)贊同甲的說法.理由是:甲的平均數高,總營業(yè)額比乙、丙都高,每月的營業(yè)額比較穩(wěn)定.【題目點撥】本題考查了方差:方差是反映一組數據的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小.記住方差的計算公式.也考查了平均數、眾數和中位數.19、(1)見解析;(2)23π;(3)【解題分析】
(1)連結OD;由AB是⊙O的直徑,得到∠ADB=90°,根據等腰三角形的性質得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圓上,于是得到結論;(2)設∠A=x,則∠A=∠P=x,∠DBA=2x,在△ABD中,根據∠A+∠ABD=90o列方程求出x的值,進而可得到∠DOB=60o,然后根據弧長公式計算即可;(3)連結OM,過D作DF⊥AB于點F,然后證明△OMN∽△FDN,根據相似三角形的性質求解即可.【題目詳解】(1)連結OD,∵AB是⊙O的直徑,∴∠ADB=90o,∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,且D在圓上,∴PD是⊙O的切線.(2)設∠A=x,∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,在△ABD中,∠A+∠ABD=90o,x=2x=90o,即x=30o,∴∠DOB=60o,∴弧BD長l=60·π·2(3)連結OM,過D作DF⊥AB于點F,∵點M是的中點,∴OM⊥AB,設BD=x,則AD=2x,AB=5x=2OM,即OM=5在Rt△BDF中,DF=25由△OMN∽△FDN得DNMN【題目點撥】本題是圓的綜合題,考查了切線的判定,圓周角定理及其推論,三角形外角的性質,含30°角的直角三角形的性質,弧長的計算,弧弦圓心角的關系,相似三角形的判定與性質.熟練掌握切線的判定方法是解(1)的關鍵,求出∠A=30o是解(2)的關鍵,證明△OMN∽△FDN是解(3)的關鍵.20、(1)-2(2)-【解題分析】試題分析:(1)將原式第一項被開方數8變?yōu)?×2,利用二次根式的性質化簡第二項利用特殊角的三角函數值化簡,第三項利用零指數公式化簡,最后一項利用負指數公式化簡,把所得的結果合并即可得到最后結果;(2)先把和a2﹣b2分解因式約分化簡,然后將a和b的值代入化簡后的式子中計算,即可得到原式的值.解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1=2﹣2×+1﹣3=2﹣+1﹣3=﹣2;(2)?(a2﹣b2)=?(a+b)(a﹣b)=a+b,當a=,b=﹣2時,原式=+(﹣2)=﹣.21、(1)見解析;(2)見解析;(3)AB=1【解題分析】
(1)由垂徑定理得出∠CPB=∠BCD,根據∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得證;(2)連接OP,知OP=OB,先證∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,據此可得2∠APG=∠F,據此即可得證;(3)連接AE,取AE中點N,連接HN、PN,過點E作EM⊥PF,先證∠PAE=∠F,由tan∠PAE=tan∠F得,再證∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,從而得出,即MF=GP,由3PF=5PG即,可設PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,證∠PEM=∠ABP得BP=3k,繼而可得BE=k=2,據此求得k=2,從而得出AP、BP的長,利用勾股定理可得答案.【題目詳解】證明:(1)∵AB是⊙O的直徑且AB⊥CD,∴∠CPB=∠BCD,∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,∴∠BCP=∠PED;(2)連接OP,則OP=OB,∴∠OPB=∠OBP,∵PF是⊙O的切線,∴OP⊥PF,則∠OPF=90°,∠FPE=90°﹣∠OPE,∵∠PEF=∠HEB=90°﹣∠OBP,∴∠FPE=∠FEP,∵AB是⊙O的直徑,∴∠APB=90°,∴∠APG+∠FPE=90°,∴2∠APG+2∠FPE=180°,∵∠F+∠FPE+∠PEF=180°,∵∠F+2∠FPE=180°∴2∠APG=∠F,∴∠APG=∠F;(3)連接AE,取AE中點N,連接HN、PN,過點E作EM⊥PF于M,由(2)知∠APB=∠AHE=90°,∵AN=EN,∴A、H、E、P四點共圓,∴∠PAE=∠PHF,∵PH=PF,∴∠PHF=∠F,∴∠PAE=∠F,tan∠PAE=tan∠F,∴,由(2)知∠APB=∠G=∠PME=90°,∴∠GAP=∠MPE,∴sin∠GAP=sin∠MPE,則,∴,∴MF=GP,∵3PF=5PG,∴,設PG=3k,則PF=5k,MF=PG=3k,PM=2k由(2)知∠FPE=∠PEF,∴PF=EF=5k,則EM=4k,∴tan∠PEM=,tan∠F=,∴tan∠PAE=,∵PE=,∴AP=k,∵∠APG+∠EPM=∠EPM+∠PEM=90°,∴∠APG=∠PEM,∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA,∴∠APG=∠ABP,∴∠PEM=∠ABP,則tan∠ABP=tan∠PEM,即,∴,則BP=3k,∴BE=k=2,則k=2,∴AP=3、BP=6,根據勾股定理得,AB=1.【題目點撥】本題主要考查圓的綜合問題,解題的關鍵是掌握圓周角定理、四點共圓條件、相似三角形的判定與性質、三角函數的應用等知識點.22、(1)見解析;(2)【解題分析】
(1)根據矩形的性質可得AB=CD,∠C=∠A=90°,再根據折疊的性質可得DE=CD,∠C=∠E=90°,然后利用“角角邊”證明即可;
(2)設AF=x,則BF=DF=8-x,根據勾股定理列方程求解即可.【題目詳解】(1)證明:在矩形ABCD中,AB=CD,∠A=∠C=90°,由折疊得:DE=CD,∠C=∠E=90°,∴AB=DE,∠A=∠E=90°,∵∠AFB=∠EFD,∴△ABF≌△EDF(AAS);(2)解:∵△ABF≌△EDF,∴BF=DF,設AF=x,則BF=DF=8﹣x,在Rt△ABF中,由勾股定理得:BF2=AB2+AF2,即(8﹣x)2=x2+62,x=,即AF=【題目點撥】本題考查了翻折變換的性質,全等三角形的判定與性質,矩形的性質,勾股定理,翻折前后對應邊相等,對應角相等,利用勾股定理列出方程是解題的關鍵.23、(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.【解題分析】
(Ⅰ)利用家庭中擁有1臺移動設備的人數除以其所占百分比即可得調查的學生人數,將擁有4臺移動設備的人數除以總人數即可求得m的值;(Ⅱ)根據眾數、中位數、加權平均數的定義計算即可;(Ⅲ)將樣本中擁有3臺移動設備的學生人數所占比例乘以總人數1500即可求解.【題目詳解】解:(Ⅰ)本次接受隨機抽樣調查的學生人數為:=50(人),∵×100=31%,∴圖①中m的值為31.故答案為50、31;(Ⅱ)∵這組樣本數據中,4出現(xiàn)了16次,出現(xiàn)次數最多,∴這組數據的眾數為4;∵將這組數據從小到大排列,其中處于中間的兩個數均為3,有=3,∴這組數據的中位數是3;由條形統(tǒng)計圖可得=3.1,∴這組數據的平均數是3.1.(Ⅲ)1500×18%=410(人).答:估計該校學生家庭中;擁有3臺移動設備的學生人數約為410人.【題目點撥】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數據;扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?4、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P點坐標(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).【解題分析】
(1)將A,B兩點坐標代入解析式,求出b,c值,即可得到拋物線解析式;(2)先根據解析式求出C點坐標,及頂點E的坐標,設點D的坐標為(0,m),作EF⊥y軸于點F,利用勾股定理表示出DC,DE的長.再建立相等關系式求出m值,進而求出D點坐標;(3)先根據邊角邊證明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后當以C、D、P為頂點的三角形與△DOC相似時,根據對應邊不同進行分類討論:①當OC與CD是對應邊時,有比例式,能求出DP的值,又因為DE=DC,所以過點P作PG⊥y軸于點G
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年九江理工職業(yè)學院馬克思主義基本原理概論期末考試模擬題帶答案解析(奪冠)
- 吶喊中的要課件
- 2024年雞東縣幼兒園教師招教考試備考題庫及答案解析(必刷)
- 2025年中國刑事警察學院馬克思主義基本原理概論期末考試模擬題帶答案解析(必刷)
- 2025年饒陽縣招教考試備考題庫及答案解析(必刷)
- 2024年盤縣招教考試備考題庫及答案解析(奪冠)
- 2025年長春職業(yè)技術大學馬克思主義基本原理概論期末考試模擬題附答案解析(必刷)
- 2025年濮陽職業(yè)技術學院單招職業(yè)技能考試題庫帶答案解析
- 2025年湘中幼兒師范高等專科學校單招職業(yè)適應性考試題庫帶答案解析
- 2025年武漢理工大學馬克思主義基本原理概論期末考試模擬題帶答案解析(必刷)
- 醫(yī)院保安考試試題及答案
- 家校合力+護航高考+-2025-2026學年高三下學期新年開學家長會
- 急性梗阻性化膿性膽管炎護理
- 2024深海礦產資源開采系統(tǒng)技術指南
- 2022通達經營性物業(yè)貸調查報告
- 立式氣液分離器計算
- 財務每日工作匯報表格
- 2022-2023學年廣東省佛山市南海區(qū)、三水區(qū)九年級(上)期末數學試卷含解析
- 版權登記代理委托書
- 物流工業(yè)園區(qū)總體規(guī)劃
- 飛行機組失能的處置
評論
0/150
提交評論