版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
捻京市海淀區(qū)中考照等覆招被做
一、單選題
1.下列手機手勢解鎖圖案中,是中心對稱圖形的是()
??
A.?(I?B.&幺Ac.(W)?D.
不足一尺,木長幾何?”譯文大致是:“用一根繩子去量一根木條,繩子剩余4.5尺;將繩子
對折再量木條,木條剩余1尺,問木條長多少尺?”如果設木條長龍尺,繩子長)'尺,根據(jù)
題意列方程組正確的是()
|x+4.5=y|x=y+4.5ix=y+4.5tx+4.5=v
D.!y
A.1yB.1yC.1x
仿+l=x|”=x產(chǎn)”產(chǎn)一
4.如圖,將UABC繞點。按順時針旋轉60°得到VAB'C,已知AC=6,BC=4,則
線段A8掃過的圖形的面積為()
C
28,10
A.—"B.—71C.6%D.—71
333
3r
5.若分式方程--=-;+2無解,則m的值為()
x+1x+1
A.-1B.-3C.0D.-2
6.已知一個二次函數(shù)圖象經(jīng)過[(一3,乂),鳥(一1,%),6。,%),CO,%)四點,若
為<%<”,則X,%,為,”的最值情況是()
A.%最小,X最大B.%最小,為最大
c.y最小,”最大D.無法確定
7.已知口口,口。2,口03是等圓,△ABP內接于口點C,E分別在口。2,口03上?如
圖,
①以C為圓心,AP長為半徑作弧交口。2于點。,連接CO;
②以E為圓心,8P長為半徑作弧交口Q于點尸,連接EF:
下面有四個結論:
@CD+EF=AB
?CD+EF=AB
③ZCO2D+/EO3F=ZAO}B
④ZCDO2+ZEFO3=NP
所有正確結論的序號是().
8.如圖,拋物線y=/2-l與x軸交于A,B兩點,。是以點C(0,4)為圓心,1為半徑的
圓上的動點,£是線段A。的中點,連接。瓦5。,則線段0E的最小值是()
y
3V25
A.2c.D.3
F2
二、填空題
9.分解因式:2x2-18=.
10.如圖,這是懷柔區(qū)部分景點的分布圖,若表示百泉山風景區(qū)的點的坐標為(0』),表示
慕田峪長城的點的坐標為,則表示雁棲湖的點的坐標為.
、,2、x+2
11.如果廠+x—5=0,那么代數(shù)式|1+—■一--?的值是_____.
IXJX+X
12.用一組小b的值說明命題“若?>1,則是錯誤的,這組值可以是〃=,b
13.一副三角板按如圖位置擺放,將三角板ABC繞著點B逆時針旋轉a(0。<6(<180。),
如果AB〃DE,那么a=.
ACE)
cIdpi\
B(F)D
14.完全相同的3個小球上面分別標有數(shù)一2、一1、1,將其放入一個不透明的盒子中后搖
勻,再從中隨機摸球兩次(第一次摸出球后放回搖勻),兩次摸到的球上數(shù)之和是負數(shù)的概
率是.
15.一般地,如果小=。(。之0),則稱x為。的四次方根,一個正數(shù)a的四次方根有兩個.它
們互為相反數(shù),記為土標,若標=10,則相=.
16.對于實數(shù)P,4,我們用符號min{p,q}表示P,4兩數(shù)中較小的數(shù),如min{l,2}=1.
因此,min卜/,一G}=;若min{(x-l)2,J?}=1,則》=________.
三、解答題
17.計算:6sin60°—(g)-V12+|2-V3|.
18.解分式方程:土二二一1=..
x尤+2
19.下面是小石設計的“過圓上一點作圓的切線”的尺規(guī)作圖的過程.
求作:直線PQ,使得PQ與口。相切.
作法:如圖2,
①連接PO并延長交口0于點A;
②在口。上任取一點B(點P,A除外),以點B為圓心,BP長為半徑作口8,與射線P0
的另一個交點為C.
③連接CB并延長交口8于點Q
④作直線PQ;
所以直線PQ就是所求作的直線.
根據(jù)小石設計的尺規(guī)作圖的過程.
(1)使用直尺和圓規(guī),補全圖形:(保留作圖痕跡)
(2)完成下面的證明.
證明:;CQ是的口3直徑,
AZCPQ=°()(填推理的依據(jù))
OP1PQ.
又:0P是口。的半徑,
???PQ是口。的切線()(填推理的依據(jù))
20.關于x的一元二次方程mx?-(2m-3)x+(m-1)=0有兩個實數(shù)根.
(1)求m的取值范圍;
(2)若m為正整數(shù),求此方程的根.
21.為了在校運會中取得更好的成績,小丁積極訓練.在某次試投中鉛球所經(jīng)過的路線是如
Q
圖所示的拋物線的一部分.已知鉛球出手處A距離地面的高度是二米,當鉛球運行的水平距
離為3米時,達到最大高度之的B處.小丁此次投擲的成績是多少米?
2
B
22.如圖,在平面直角坐標系xOy中,直線y=篦與X軸的交點為A(T,0),與y軸的
交點為8,線段的中點M在函數(shù)y=々4工0)的圖象上.
X
(1)求加,女的值;
(2)將線段A8向左平移〃個單位長度(〃>0)得到線段CD,AM,5的對應點分別為
C,N,D.
k
①當點。落在函數(shù)y='(x<0)的圖象上時,求〃的值;
②當時,結合函數(shù)的圖象,直接寫出〃的取值范圍.
23.某地質量監(jiān)管部門對轄區(qū)內的甲、乙兩家企業(yè)生產(chǎn)的某同類產(chǎn)品進行檢查,分別隨機抽
取了50件產(chǎn)品并對某一項關鍵質量指標做檢測,獲得了它們的質量指標值s,并對樣本
數(shù)據(jù)(質量指標值s)進行了整理、描述和分析.下面給出了部分信息.
a.該質量指標值對應的產(chǎn)品等級如下:
質量指標值20<.s<2525<5<3030<5<35350s<4040<5<45
等級次品二等品一等品二等品次品
說明:等級是一等品,二等品為質量合格(其中等級是一等品為質量優(yōu)秀);等級是次品為
質量不合格.
b.甲企業(yè)樣本數(shù)據(jù)的頻數(shù)分布統(tǒng)計表如下(不完整):
c.乙企業(yè)樣本數(shù)據(jù)的頻數(shù)分布直方圖如下:
匕*4*??*■??***?
分引級數(shù)然率
2O^x<2S20J04
25Cs<30m
WCx<3532n
0.12
40Cj<4S00X)0
合計501.00
d.兩企業(yè)樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下:
平均數(shù)中位數(shù)眾數(shù)方差
甲企業(yè)31.9232.53411.87
乙企業(yè)31.9231.53115.34
根據(jù)以上信息,回答下列問題:
(1)m的值為,n的值為;
(2)若從甲企業(yè)生產(chǎn)的產(chǎn)品中任取一件,估計該產(chǎn)品質量合格的概率為;若乙
企業(yè)生產(chǎn)的某批產(chǎn)品共5萬件,估計質量優(yōu)秀的有萬件;
(3)根據(jù)圖表數(shù)據(jù),你認為____企業(yè)生產(chǎn)的產(chǎn)品質量較好,理由為.(從某
個角度說明推斷的合理性)
24.如圖,△ABC是。O內接三角形,NACB=45o,/AOC=150。,過點C作。0切線交AB延
長線于點D.
(1)求證:CD=CB;(2)如果。0的半徑為迎,求AC的長.
25.小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y=%4-5x2+4的圖象與性質進行了探究.下面是小明
的探究過程,請補充完整:
(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應數(shù)值如下表:
9113511153119
11
X-2-1012
452424424254
y4.33.20-2.2-1.402.83.743.72.80-1.4-2.2m3.2
其中m=;
(2)如圖,在平面直角坐標系xO),中,描出了以上表中各組對應值為坐標的點,根據(jù)描出
的點,畫出該函數(shù)的圖象;
(3)觀察函數(shù)圖象,寫出一條該函數(shù)的性質;
(4)進一步探究函數(shù)圖象發(fā)現(xiàn):
①方程/一5/+4=0有個互不相等的實數(shù)根;
②有兩個點(XI,)1)和(X2,”)在此函數(shù)圖象上,當X2>X|>2時,比較V和y2的大小關
系為:
V"(填或"=");
③若關于X的方程/一5產(chǎn)+4=a有4個互不相等的實數(shù)根,則a的取值范圍
是.
26.在平面直角坐標系xOy中,點C是二次函數(shù)y=mx2+4mx+4m+l的圖象的頂點,一
次函數(shù)y=x+4的圖象與x軸、y軸分別交于點A、B.
(1)請你求出點A、B、C的坐標;
(2)若二次函數(shù)y=mx2+4mx+4m+l與線段AB恰有一個公共點,求m的取值范圍.
VA
5-
4-
3-
2-
1-
-5-4-3-2-1吐12345x
-3
-4
-5
27.在口ABC中,AC=BC,ZACB=9Q°,點E在直線BC上(8,C除外),分別經(jīng)過
點E和點3作AE和A8的垂線,兩條垂線交于點尸,研究AE和EF的數(shù)量關系.
(1)某數(shù)學興趣小組在探究AE,瓦'的關系時,運用“從特殊到一般”的數(shù)學思想,他們發(fā)
現(xiàn)當點E是BC的中點時,只需要取AC邊的中點G(如圖1),通過推理證明就可以得到AE
和EF的數(shù)量關系,請你按照這種思路直接寫出AE和EF的數(shù)量關系;
圖I
(2)那么當點E是直線BC上(民。除外)(其它條件不變),上面得到的結論是否仍然成立
呢?請你從“點E在線段上”,“點E在線段的延長線”,"點E在線段8C的反向延
長線上”三種情況中,任選一種情況,在圖2中畫出圖形,并證明你的結論;
(3)當點E在線段CB的延長線上時,若BE=nBC(O<〃<1),請直接寫出S^BC:S^EF
的值.
28.對于平面直角坐標系宜內中的點M和圖形叫,叱給出如下定義:點p為圖形叫上一
點,點。為圖形嗎上一點,當點M是線段PQ的中點時,稱點M是圖形叱,叱的“中立
點如果點P&,X),。(工2,%),那么"中立點”M的坐標為(五產(chǎn),上產(chǎn))已知,
點4(—3,0),8(0,4),C(4,0).
v)
6
5
3
2
-6-5-4-2~\O123456%
£(0,1),中,可以成為點A和線段BC的“中立
點''的是;
(2)已知點G(3,0),□G的半徑為2.如果直線y=-x+\上存在點K可以成為點A和口G
的“中立點”,求點K的坐標;
(3)以點。為圓心,半徑為2作圓.點N為直線y=2x+4上的一點,如果存在點N,
使得),軸上的一點可以成為點N與口C的“中立點”,直接寫出點N的橫坐標的取值范圍.
答案
1.B
2.B
3.A
【解析】
解:如果設木條長工尺,繩子長尺,
ix+4.5=y
根據(jù)題意得:
1-+1=x
12
故選:A.
4.D
【解析】
解:?.?A4BC繞點。旋轉60°得到△A'B'C,
\DABC@AA'B'C,
\SnAK=5VABC,ZBCB'=ZACA'=60°.
QAB掃過的圖形的面積=^mifiACAii+^DABC~)
A6掃過的圖形的面積=SmACAirSmBCB,
A8掃過的圖形的面積=,倉力36-,創(chuàng)916=半0.
故選:D.
5.B
6.A
【詳解】
???二次函數(shù)圖象經(jīng)過6(-3,X),鳥(-1,%),6(1,%),乙(3,九)四點,且為<%<為,
...拋物線的開口向上,且對稱軸在直線x=o與直線x=l之間,
,4(-3,X)離對稱軸的距離最大,6(1,%)離對稱軸的距離最小,
二為最小,X最大,
故答案為:A.
7.D
【詳解】
解:由題意得,AP二CD3尸二ER
9:AP+BP>AB,
:.CD+EF>AB;
???。0],。02,。。3是等圓,
:?AP=CD^BP=EF,
:AP+BP=AB^
??CD+EF=AB;
???ZCO2D=ZA01P,ZEO3F=ABO1P,
,/ZAO/P+ZBOIP=ZAOIP,
:.ZCO2D+ZEOjF=ZAOlB;
a
:ZCDO2=ZAPOh/BPO產(chǎn)/EFO3,
■:/P=/AP01+/BP0],
:./CDO2+/EFO3=/P,
???正確結論的序號是②③④,
故選D.
8.A
【詳解】
12?
y=-x2-1,
9
1,
.?.當y=0時,Ong/一1,
解得:x=±3,
??.A點與B點坐標分別為:(一3,0),(3,0),
即:AO=BO=3,
AO點為AB的中點,
又?.?圓心C坐標為(0,4),
:.OC=4,
,BC長度=y/os2+OC2=5-
點為AB的中點,E點為AD的中點,
...0£為4ABD的中位線,
即:OE」BD,
2
:D點是圓上的動點,
由圖可知,BD最小值即為BC長減去圓的半徑,
.?.BD的最小值為4,
I
,0E=-BD=2,
2
即0E的最小值為2,
故選:A.
9.2(x+3)(%-3)
10.(1,-3)
【詳解】
解:如圖所示:雁棲湖的點的坐標為:(1,-3).
故答案為(1,-3).
11.5.
12.-2-1
13.30°.
解::AB〃DE,
二/ABE=/BED=30。,
即a=30°.
故答案為30°.
2
14.-
3
15.±10
【詳解】
??m4=104,
m-±10.
故答案為±10.
16.-V32或-1.
【解析】
①-,
:.min{—^/2,—y/3]=~>/3;
②,.,min{(x-l)2>x2}=i,
當x>0.5時,
/.%-1=±1,
.\x-l=l,X-l=-l,
解得:XI=2/2=0(不合題意,舍去),
當x<0.5時,
解得:?二1(不合題意,舍去)/2=-1,
17.-7
解:6sin60°——J+12—
=6x--9-2A^+2->/3
2
=3^-9-273+2-73
=-7
18.x=-\.
解:去分母,得(x-2)(x+2)-x(x+2)=2x.
去括號,得f一4一工2一21=2%.
解得:x=-\.
經(jīng)檢驗x=-1是原方程的解.
所以原方程的解是x=-l.
19.(1)補圖見解析;(2)90,圓周角定理,切線的判定定理.
【詳解】
(1)補全圖形如圖所示:PQ即為所求,
(2):CQ是的口8直徑,
ZCPC=90_°(圓周角定理)
OP1PQ.
又尸是口。的半徑,
???PQ是口O的切線(切線的判定定理)
故答案為:90,圓周角定理,切線的判定定理
9,
20.(1)〃?4—且加。0:(2)%,=0,x2=—\.
【解析】
(1)VA=[—(2w-3)]2—4/?z(m—1)
=-8/w+9.
9
解得“2w一且"7工0.
8
(2)?.?根為正整數(shù),
機=1.
原方程為X?+x=0.
解得大=0,Xj=-1.
21.小丁此次投擲的成績是8米.
【解析】
如圖建立直角坐標系,
Q5
?.?鉛球出手處距離地面的高度是M米,當鉛球運行的水平距離為3米時,最大高度為彳米,
85
??A(0,-),B(3,一),
52
設二次函數(shù)的解析式為y=a(x-3)2+1,
.,58
??(0-3)2an—=一,
25
解得:a=一^,
二二次函數(shù)的解析式為y=-,(x-3)2+g,
當y=0時,一'(x-3)2+1-=0,
解得:xi=8,X2=-2(舍去),
...小丁此次投擲的成績是8米.
22.(1)加=4,攵=-4;⑵①“=1;@n>2.
解:(1)如圖,
?.?直線。=%+加與X軸的交點為A(T,0),
二〃?=4.
-/直線>=x+機與y軸的交點為B,
???點B的坐標為B(0,4).
?.。線段A8的中點為M,
???可得點M的坐標為M(—2,2).
?.?點M在函數(shù)y=A(%kO)的圖象上,
X
/.k=-4.
(2)①由題意得,點。的坐標為(-〃,4),
k
?.?點。落在函數(shù)y=—(女工0)的圖象上,
x
\-4”=-4,
解得〃=1.
②由(1)知,M(—2,2),
由①知,。(-",4),
\MD=?〃-2)2+(2-4心,
由平移知,MN=n,
\MD,,MN
\(〃-2『+(2-4-,
72..2,
二〃的取值范圍是“..2.
23.(1)10,0.64;(2)0.96,3.5;(3)甲,甲企業(yè)抽樣產(chǎn)品的方差小于乙企業(yè),產(chǎn)品的穩(wěn)
定性更好
【詳解】
(1)〃=32+50=0.64,
機=50x(1—0.04—0.64—0.12—0.00)=10,
故答案為:10,0.64;
(2)若從甲企業(yè)生產(chǎn)的產(chǎn)品中任取一件,估計該產(chǎn)品質量合格的概率為:
1-0.04=0.96,
乙企業(yè)生產(chǎn)的某批產(chǎn)品共5萬件,估計質量優(yōu)秀的有:5x—=3.5(萬件),
50
故答案為:0.96,3.5;
(3)我認為甲企業(yè)生產(chǎn)的產(chǎn)品質量較好,
理由:甲企業(yè)抽樣產(chǎn)品的方差小于乙企業(yè),產(chǎn)品的穩(wěn)定性更好,
故答案為:甲,甲企業(yè)抽樣產(chǎn)品的方差小于乙企業(yè),產(chǎn)品的穩(wěn)定性更好.
24.(1)證明見解析;(2)8+1.
【詳解】
(1)連接OB,則/AOB=2NACB=2x45°=90°,VOA=OB,AZOAB=OBA=45°,
VZAOC=150o,OA=OC,AZOCA=ZOAC=15°,AZOCB=ZOCA+ZACB=60°,
AAOBC是等邊三角形,,ZBOC=ZOBC=60°,ZCBD=180°-ZOBA-ZOBC=75°,
YCD是。O的切線,...OCLCD,
ZD=360°-ZOBD-ZBOC-ZOCD=360°-(60°+75°)-60°-90°=75°,
ZCBD=ZD,;.CB=CD;
(2)在RSAOB中,AB=J^OA=&x加=2,:CD是。O的切線,/DCB=/CAD,
:ND是公共角,.'.ADBC^ADCA,■我,.,.CD2=AD?BD=BD?(BD+AB),
ADVU
VCD=BC=OC=V2,???2=BD?(2+BD),解得:BD=丙-1,.二AC=AD=AB+BD=小1.
9
25.⑴i(2)見解析;(3)圖像關于y軸對稱,(答案不唯f(4)4;<;北<"4
【詳解】
⑴將x=2代入函數(shù)y=x4-5x2+4即可得m=0.
(2)連接散點得出函數(shù)圖象如圖:
(3)該函數(shù)為偶函數(shù)(或函數(shù)關于解軸對稱等).
(4)①觀察圖象可得方程--5x2+4=0有4個互不相等的實數(shù)根.
②圖象可得當x>2時,函數(shù)單調遞增,所以當X2>XI>2時,yi<y2.
③令b=x2,yi=x34-5x2+4-a=b2-5b+4-a,
當△=52-4x1x(4-a)=9+4a>0時,
9
即a>-丁時,yi關于b有兩個不等的實根,
則方程X4-5X2+4=0有4個互不相等的實數(shù)根,
當x=0時需yi>0,即4-a>0,a<4.
9
綜上所述,當--<a<4時,方程一5x2+4=。有m個互不相等的實數(shù)根.
4
31
26.(1)A(-4,0)和B(0,4);(2)0<加<一或一一<m<Q
44
【解析】
解:(1)y=mx2+4mx+4m+1=m(x+2)2+1,
.??拋物線頂點坐標為C(—2,1),
對于y=x+4,令x=0,得到y(tǒng)=4;y=0,得到x=-4,
直線y=x+4與x軸、y軸交點坐標分別為A(-4,0)和B(0,4);
(2)把x=-4代入拋物線解析式得:y=4m+l,
①當m>0時,y=4m+l>0,說明拋物線的對稱軸左側總與線段AB有交點,
.??只需要拋物線右側與線段AB無交點即可,
如圖1所示,
3
只需要當x=0時,拋物線的函數(shù)值y=4m+lV4,即m<一,
4
3
則當0<根<一時,拋物線與線段AB只有一個交點;
4
只需y=4m+l>0即可,
解得:一
4
31
綜上,當?!醇印匆换蛞灰唬肌?<0時,拋物線與線段AB只有一個交點.
44
仍然成立.證明見解析;⑶2
27.(1)AE=EF-,(2)SAABC:SAAEF=\:(n+2n+2).
【分析】
(1)連接GE,根據(jù)等腰直角三角形的性質可得NCGE=NCEG=45。,
NCBA=NCAB=45°,然后利用ASA即可證出AAGE鄉(xiāng)AEBF,從而得出結論;
(2)在AC上截取CG=CE,連接GE,根據(jù)等腰直角三角形的性質可得
ZCGE=ZCEG=45°,ZCBA=ZCAB=45°,然后利用ASA即可證出
△AGE之AEBF,從而得出結論;
(3)在AC的延長線上截取CG=CE,連接GE,AF,利用ASA證出LAGEmAEBF,
可得口AEF為等腰直角三角形,設CA=CB=a,則BE=nBC=na,利用勾股定理求出AE,
根據(jù)三角形的面積公式即可求出結論.
【解析】
解:⑴AE=EF,
連接GE
圖I
點E是BC的中點,點G為AC的中點
;.AG=CG=CE=EB,
因為NAC8=90。,
所以ZCGE=ZCEG=45°,ZCBA=ZCAB=45°.
所以ZAGE=NEBF=135°.
因為AELEF,AB工BF,
所以ZAEF=ZABF=ZACB=90°,
所以ZFEB+ZAEF=ZAEB=ZEAC+ZACB.
所以NEE5=NE4C.
在DAGE與/中,
NAGE=NEBF,
<AG=BE,
NGAE=NFEB,
所以
(2)仍然成立.
在AC上截取CG=CE,連接
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025廣東深圳市物業(yè)發(fā)展(集團)股份有限公司校園招聘20人筆試歷年參考題庫附帶答案詳解
- 2025廣東東莞市東坑測繪有限公司招聘綜合及筆試歷年參考題庫附帶答案詳解
- 2025年福建福州市鼓樓區(qū)第五塑料廠東街街道招聘1人筆試參考題庫附帶答案詳解
- 2025年濱州清鴻水務有限公司公開招聘工作人員筆試和人員筆試歷年參考題庫附帶答案詳解
- 2025年武漢市江夏國資集團招聘財務工作人員筆試歷年參考題庫附帶答案詳解
- 2025年信陽光山縣淮南水利工程有限公司公開招聘工作人員2人筆試歷年參考題庫附帶答案詳解
- 2025年中國中煤招聘總部工作人員11人筆試參考題庫附帶答案詳解
- 2025年三季度云南航空產(chǎn)業(yè)投資集團招聘(云南航信空港網(wǎng)絡有限公司崗位)考試筆試歷年參考題庫附帶答案詳解
- 2025年12月四川成都設計咨詢集團有限公司招聘勘察設計工程師等崗位4人筆試歷年參考題庫附帶答案詳解
- 2025山東淄博建衡工程檢測有限公司招聘6人筆試歷年參考題庫附帶答案詳解
- 山東省濟南市2025-2026年高三上第一次模擬考試生物+答案
- 寒假蓄力一模沖刺+課件-2025-2026學年高三上學期寒假規(guī)劃班會課
- 2026年廣州中考政治真題變式訓練試卷(附答案可下載)
- 2026國家國防科技工業(yè)局所屬事業(yè)單位第一批招聘62人備考題庫及參考答案詳解1套
- 2025-2026學年天津市河東區(qū)八年級(上)期末英語試卷
- 2025年初中初一語文基礎練習
- 2026年中央網(wǎng)信辦直屬事業(yè)單位-國家計算機網(wǎng)絡應急技術處理協(xié)調中心校園招聘備考題庫參考答案詳解
- 老友記電影第十季中英文對照劇本翻譯臺詞
- 2025年黑龍江省大慶市檢察官逐級遴選筆試題目及答案
- 國保秘密力量工作課件
- 2025年銀行柜員年終工作總結(6篇)
評論
0/150
提交評論