版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年黑龍江省牡丹江一中學九年級數學第一學期期末聯考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.一個不透明的布袋中有分別標著數字1,2,3,4的四個乒乓球,現從袋中隨機摸出兩個乒乓球,則這兩個乒乓球上的數字之和大于5的概率為()A. B. C. D.2.如圖,已知在中,,于,則下列結論錯誤的是()A. B. C. D.3.下表是一組二次函數的自變量x與函數值y的對應值:
1
1.1
1.2
1.3
1.4
-1
-0.49
0.04
0.59
1.16
那么方程的一個近似根是()A.1 B.1.1 C.1.2 D.1.34.下列命題正確的是(
)A.圓是軸對稱圖形,任何一條直徑都是它的對稱軸B.平分弦的直徑垂直于弦,并且平分弦所對的弧C.相等的圓心角所對的弧相等,所對的弦相等D.同弧或等弧所對的圓周角相等5.一次函數y=bx+a與二次函數y=ax2+bx+c(a0)在同一坐標系中的圖象大致是()A. B. C. D.6.如圖,任意轉動正六邊形轉盤一次,當轉盤停止轉動時,指針指向大于3的數的概率是()A. B. C. D.7.如圖,點D是△ABC的邊BC上一點,∠BAD=∠C,AC=2AD,如果△ACD的面積為15,那么△ABD的面積為()A.15 B.10 C.7.5 D.58.如圖,AB是⊙O的直徑,BC與⊙O相切于點B,AC交⊙O于點D,若∠ACB=50°,則∠BOD等于()A.40° B.50° C.60° D.80°9.已知下列命題:①若,則;②當時,若,則;③直角三角形中斜邊上的中線等于斜邊的一半;④矩形的兩條對角線相等.其中原命題與逆命題均為真命題的個數是()A.個 B.個 C.個 D.個10.如圖,直線AB、BC、CD分別與⊙O相切于E、F、G,且AB∥CD,若BO=6cm,OC=8cm則BE+CG的長等于()A.13 B.12 C.11 D.1011.如圖,在平面直角坐標系中,在軸上,,點的坐標為,繞點逆時針旋轉,得到,若點的對應點恰好落在反比例函數的圖像上,則的值為()A.4. B.3.5 C.3. D.2.512.如圖,點在的邊上,以原點為位似中心,在第一象限內將縮小到原來的,得到,點在上的對應點的的坐標為()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,河堤橫斷面迎水坡的坡比是,堤高,則坡面的長度是__________.14.一個小球在如圖所示的方格地板上自由滾動,并隨機停留在某塊地板上,每塊地板大小、質地完全相同,那么該小球停留在黑色區(qū)域的概率是______.15.對于兩個不相等的實數a、b,我們規(guī)定max{a、b}表示a、b中較大的數,如max{1,1}=1.那么方程max{1x,x﹣1}=x1﹣4的解為.16.如圖,在正方形ABCD中,點E在BC邊上,且BC=3BE,AF平分∠DAE,交DC于點F,若AB=3,則點F到AE的距離為___________.17.若正六邊形的邊長為2,則此正六邊形的邊心距為______.18.為估計全市九年級學生早讀時間情況,從某私立學校隨機抽取100人進行調查,在這個問題中,調查的樣本________(填“具有”或“不具有”)代表性.三、解答題(共78分)19.(8分)如圖,A(8,6)是反比例函數y=(x>0)在第一象限圖象上一點,連接OA,過A作AB∥x軸,且AB=OA(B在A右側),直線OB交反比例函數y=的圖象于點M(1)求反比例函數y=的表達式;(2)求點M的坐標;(3)設直線AM關系式為y=nx+b,觀察圖象,請直接寫出不等式nx+b﹣≤0的解集.20.(8分)如圖,在東西方向的海面線上,有,兩艘巡邏船和觀測點(,,在直線上),兩船同時收到漁船在海面停滯點發(fā)出的求救信號.測得漁船分別在巡邏船,北偏西和北偏東方向,巡邏船和漁船相距120海里,漁船在觀測點北偏東方向.(說明:結果取整數.參考數據:,.)(1)求巡邏船與觀測點間的距離;(2)已知觀測點處45海里的范圍內有暗礁.若巡邏船沿方向去營救漁船有沒有觸礁的危險?并說明理由.21.(8分)計算:2cos45°﹣tan60°+sin30°﹣tan45°22.(10分)如圖,已知AB為⊙O的直徑,AD,BD是⊙O的弦,BC是⊙O的切線,切點為B,OC∥AD,BA,CD的延長線相交于點E.(1)求證:DC是⊙O的切線;(2)若AE=1,ED=3,求⊙O的半徑.23.(10分)在平面直角坐標系中的兩個圖形與,給出如下定義:為圖形上任意一點,為圖形上任意一點,如果兩點間的距離有最小值,那么稱這個最小值為圖形間的“和睦距離”,記作,若圖形有公共點,則.(1)如圖(1),,,⊙的半徑為2,則,;(2)如圖(2),已知的一邊在軸上,在上,且,,.①是內一點,若、分別且⊙于E、F,且,判斷與⊙的位置關系,并求出點的坐標;②若以為半徑,①中的為圓心的⊙,有,,直接寫出的取值范圍.24.(10分)如圖,在△ABC中,AB=AC,AD是△ABC的角平分線,E,F分別是BD,AD上的點,取EF中點G,連接DG并延長交AB于點M,延長EF交AC于點N。(1)求證:∠FAB和∠B互余;(2)若N為AC的中點,DE=2BE,MB=3,求AM的長.25.(12分)如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,把△ABD、△ACD分別以AB、AC為對稱軸翻折變換,D點的對稱點為E、F,延長EB、FC相交于G點.(1)求證:四邊形AEGF是正方形;(2)求AD的長.26.在不透明的箱子中,裝有紅、白、黑各一個球,它們除了顏色之外,沒有其他區(qū)別.(1)隨機地從箱子里取出一個球,則取出紅球的概率是多少?(2)隨機地從箱子里取出1個球,然后放回,再搖勻取出第二個球,請你用畫樹狀圖或列表的方法表示所有等可能的結果,并求兩次取出相同顏色球的概率.
參考答案一、選擇題(每題4分,共48分)1、B【解析】列表得:
1
2
3
4
1
-
2+1=3
3+1=4
4+1=5
2
1+2=3
-
3+2=5
4+2=6
3
1+3=4
2+3=5
-
4+3=7
4
1+4=5
2+4=6
3+4=7
-
∵共有12種等可能的結果,這兩個乒乓球上的數字之和大于5的有4種情況,∴這兩個乒乓球上的數字之和大于5的概率為:.故選B.2、A【分析】根據三角形的面積公式判斷A、D,根據射影定理判斷B、C.【詳解】由三角形的面積公式可知,CD?AB=AC?BC,A錯誤,符合題意,D正確,不符合題意;
∵Rt△ABC中,∠ACB=90°,CD⊥AB,
∴AC2=AD?AB,BC2=BD?AB,B、C正確,不符合題意;
故選:A.【點睛】本題考查的是射影定理、三角形的面積計算,掌握射影定理、三角形的面積公式是解題的關鍵.3、C【詳解】解:觀察表格得:方程x2+3x﹣5=0的一個近似根為1.2,故選C考點:圖象法求一元二次方程的近似根.4、D【分析】根據圓的對稱性、圓周角定理、垂徑定理逐項判斷即可.【詳解】解:A.圓是軸對稱圖形,它有無數條對稱軸,其對稱軸是直徑所在的直線或過圓心的直線,此命題不正確;B.平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧,此命題不正確;C.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,此命題不正確;D.同弧或等弧所對的圓周角相等,此命題正確;故選:D.【點睛】本題考查的知識點是圓的對稱性、圓周角定理以及垂徑定理,需注意的是對稱軸是一條直線并非是線段,而圓的兩條直徑互相平分但不一定垂直.5、C【解析】A.由拋物線可知,a>0,x=?<0,得b<0,由直線可知,a>0,b>0,故本選項錯誤;B.由拋物線可知,a>0,x=?>0,得b<0,由直線可知,a>0,b>0,故本選項錯誤;C.由拋物線可知,a<0,x=?<0,得b<0,由直線可知,a<0,b<0,故本選項正確;D.由拋物線可知,a<0,x=?<0,得b<0,由直線可知,a<0,b>0,故本選項錯誤.故選C.6、D【解析】分析:根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值就是其發(fā)生的概率.詳解:∵共6個數,大于3的有3個,∴P(大于3)=.故選D.點睛:本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.7、D【分析】首先證明△BAD∽△BCA,由相似三角形的性質可得:△BAD的面積:△BCA的面積為1:4,得出△BAD的面積:△ACD的面積=1:3,即可求出△ABD的面積.【詳解】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∵AC=2AD,∴,∴,∵△ACD的面積為15,∴△ABD的面積=×15=5,故選:D.【點睛】本題主要考查了相似三角形的判定與性質,掌握相似三角形的判定與性質是解題的關鍵.8、D【分析】根據切線的性質得到∠ABC=90°,根據直角三角形的性質求出∠A,根據圓周角定理計算即可.【詳解】∵BC是⊙O的切線,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圓周角定理得,∠BOD=2∠A=80°,故選D.【點睛】本題考查的是切線的性質、圓周角定理,掌握圓的切線垂直于經過切點的半徑是解題的關鍵.9、B【分析】先寫出每個命題的逆命題,再分別根據絕對值的意義、不等式的性質、直角三角形的性質和判定、矩形的性質和判定依次對各命題進行判斷即可.【詳解】解:①的原命題:若,則,是假命題;①的逆命題:若,則,是真題,故①不符合題意;②的原命題:當時,若,則,根據不等式的基本性質知該命題是真命題;②的逆命題:當時,若,則,也是真命題,故②符合題意;③的原命題:直角三角形中斜邊上的中線等于斜邊的一半,是真命題;③的逆命題:一邊上的中線等于這邊的一半的三角形是直角三角形,也是真命題,故③符合題意;④的原命題:矩形的兩條對角線相等,是真命題;④的逆命題:對角線相等的四邊形是矩形,是假命題,故④不符合題意.綜上,原命題與逆命題均為真命題的是②③,共個,故選B.【點睛】本題考查了命題和定理、實數的絕對值、不等式的性質、直角三角形的性質和判定、矩形的性質和判定等知識,屬于基本題目,熟練掌握以上基本知識是解題的關鍵.10、D【解析】根據切線長定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠OBF+∠OCF=90°,∴∠BOC=90°,∵OB=6cm,OC=8cm,∴BC=10cm,∴BE+CG=BC=10cm,故選D.【點睛】本題主要考查了切線長定理,涉及到平行線的性質、勾股定理等,求得BC的長是解題的關鍵.11、C【分析】先通過條件算出O’坐標,代入反比例函數求出k即可.【詳解】由題干可知,B點坐標為(1,0),旋轉90°后,可知B’坐標為(3,2),O’坐標為(3,1).∵雙曲線經過O’,∴1=,解得k=3.故選C.【點睛】本題考查反比例函數圖象與性質,關鍵在于坐標平面內的圖形變換找出關鍵點坐標.12、A【解析】根據位似的性質解答即可.【詳解】解:∵點P(8,6)在△ABC的邊AC上,以原點O為位似中心,在第一象限內將△ABC縮小到原來的,得到△A′B′C′,∴點P在A′C′上的對應點P′的的坐標為:(4,3).故選A.【點睛】此題主要考查了位似變換,正確得出位似比是解題關鍵.如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k,進而結合已知得出答案.二、填空題(每題4分,共24分)13、【分析】先根據坡比求出AB的長度,再利用勾股定理即可求出BC的長度.【詳解】故答案為:.【點睛】本題主要考查坡比及勾股定理,掌握坡比的定義及勾股定理是解題的關鍵.14、【分析】先求出黑色方磚在整個地板中所占的比值,再根據其比值即可得出結論.【詳解】由圖可知,黑色方磚6塊,共有16塊方磚,
∴黑色方磚在整個地板中所占的比值,
∴小球最終停留在黑色區(qū)域的概率是,故答案為:.【點睛】本題考查了幾何概率,用到的知識點為:幾何概率=相應的面積與總面積之比.15、【分析】直接分類討論得出x的取值范圍,進而解方程得出答案.【詳解】解:當1x>x﹣1時,故x>﹣1,則1x=x1﹣4,故x1﹣1x﹣4=0,(x﹣1)1=5,解得:x1=1+,x1=1﹣;當1x<x﹣1時,故x<﹣1,則x﹣1=x1﹣4,故x1﹣x﹣1=0,解得:x3=1(不合題意舍去),x4=﹣1(不合題意舍去),綜上所述:方程max{1x,x﹣1}=x1﹣4的解為:x1=1+,x1=1﹣.故答案為:x1=1+,x1=1﹣.【點睛】考核知識點:一元二次方程.理解規(guī)則定義是關鍵.16、【分析】延長AE交DC延長線于M,關鍵相似求出CM的長,求出AM長,根據角平分線性質得出比例式,代入求出即可.【詳解】延長AE交DC延長線于M,
∵四邊形ABCD是正方形,BC=3BE,BC=3,
∴AD=DC=BC=AB=3,∠D=90°,BE=1,CE=2,AB∥DC,
∴△ABE∽△MCE,
∴,
∴CM=2AB=6,
即DM=3+6=9,
由勾股定理得:,
∵AF平分∠DAE,
∴,
∴,
解得:,
∵AF平分∠DAE,∠D=90°,
∴點F到AE的距離=,
故答案為:.【點睛】本題考查了角平分線性質,勾股定理,相似三角形的性質和判定,正方形的性質等知識點,能正確作出輔助線是解此題的關鍵.17、.【分析】連接OA、OB,根據正六邊形的性質求出∠AOB,得出等邊三角形OAB,求出OA、AM的長,根據勾股定理求出即可.【詳解】連接OA、OB、OC、OD、OE、OF,∵正六邊形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,∴△AOB是等邊三角形,∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,在△OAM中,由勾股定理得:OM=.18、不具有【分析】根據抽取樣本的注意事項即要考慮樣本具有廣泛性與代表性,其代表性就是抽取的樣本必須是隨機的,以此進行分析.【詳解】解:要估計全市九年級學生早讀時間情況,應從該市所以學校九年級中隨機抽取100人進行調查,所以在這個問題中調查的樣本不具有代表性.故此空填“不具有”.【點睛】本題考查抽樣調查的可靠性,解題時注意:樣本具有代表性是指抽取的樣本必須是隨機的,即各個方面,各個層次的對象都要有所體現.三、解答題(共78分)19、(1)y=;(2)M(1,4);(3)0<x≤8或x≥1.【分析】(1)根據待定系數法即可求得;(2)利用勾股定理求得AB=OA=10,由AB∥x軸即可得點B的坐標,即可求得直線OB的解析式,然后聯立方程求得點M的坐標;(3)根據A、M點的坐標,結合圖象即可求得.【詳解】解:(1)∵A(8,6)在反比例函數圖象上∴6=,即m=48,∴反比例函數y=的表達式為y=;(2)∵A(8,6),作AC⊥x軸,由勾股定理得OA=10,∵AB=OA,∴AB=10,∴B(18,6),設直線OB的關系式為y=kx,∴6=18k,∴k=,∴直線OB的關系式為y=x,由,解得x=±1又∵在第一象限∴x=1故M(1,4);(3)∵A(8,6),M(1,4),觀察圖象,不等式nx+b﹣≤0的解集為:0<x≤8或x≥1.【點睛】本題主要考查一次函數與反比例函數的交點問題,解題的關鍵是掌握待定系數法求函數解析式及求直線、雙曲線交點的坐標.20、(1)76海里;(2)沒有觸礁的危險,理由見解析【分析】(1)作.根據直角三角形性質求AE,CE,AB,再證.所以.(2)作.證BF=DF,由BF2+DF2=BD2可求解.【詳解】解:(1)作.因為漁船分別在巡邏船,北偏西和北偏東方向,所以∠CAE=60°,∠CBE=45°所以∠ACE=30°,∠ACB=180°-60°-45°=75°;所以(海里),(海里).所以.因為漁船在觀測點北偏東方向.所以∠CDE=75?所以∠CDE=∠ACB,所以.所以.即.解得,.∴海里.(2)沒有觸礁的危險.作.因為∠CBD=45°所以BF=DF所以BF2+DF2=BD2即DF2+DF2=762可求得.∵,∴沒有觸礁的危險.【點睛】本題考查了解直角三角形的應用,解題的關鍵是從實際問題中整理出直角三角形并選擇合適的邊角關系解答.21、-【分析】將各特殊角的三角函數值代入即可得出答案.【詳解】解:原式=2×﹣+﹣×1=-【點睛】此題考查特殊角的三角函數值,屬于基礎題,熟練記憶一些特殊角的三角函數值是關鍵.22、(1)證明見解析;(2)1.【解析】試題分析:(1)、連接DO,根據平行線的性質得出∠DAO=∠COB,∠ADO=∠COD,結合OA=OD得出∠COD=∠COB,從而得出△COD和△COB全等,從而得出切線;(2)、設⊙O的半徑為R,則OD=R,OE=R+1,根據Rt△ODE的勾股定理求出R的值得出答案.試題解析:(1)證明:連結DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中∵OD=OB,OC=OC,∴△COD≌△COB(SAS),∴∠CDO=∠CBO.∵BC是⊙O的切線,∴∠CBO=90°,∴∠CDO=90°,又∵點D在⊙O上,∴CD是⊙O的切線;(2)設⊙O的半徑為R,則OD=R,OE=R+1,∵CD是⊙O的切線,∴∠EDO=90°,∴ED2+OD2=OE2,∴32+R2=(R+1)2,解得R=1,∴⊙O的半徑為1.23、(1)2,;(2)①是⊙的切線,;②或.【分析】(1)根據圖形M,N間的“和睦距離”的定義結合已知條件求解即可.(2)①連接DF,DE,作DH⊥AB于H.設OC=x.首先證明∠CBO=30,再證明DH=DE即可證明是⊙的切線,再求出OE,DE的長即可求出點D的坐標.②根據,得到不等式組解決問題即可.【詳解】(1)∵A(0,1),C(3,4),⊙C的半徑為2,∴d(C,⊙C)=2,d(O,⊙C)=AC?2=,故答案為2;;(2)①連接,作于.設.∵,∴,解得,∴,∴,,∵是⊙的切線,∴平分,∴,∴,∵,∴,∴,∴是⊙的切線.∵,設,∵,∴,∴,,∴,∴,②∵∴B(0,)∴BD=由,,得解得或故答案為:或.【點睛】本題屬于圓綜合題,考查了圖形M,N間的“和睦距離”,解直角三角形的應用,切線的判定和性質,不等式組等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考壓軸題.24、(1)見解析;(2)AM=7【解析】(1)根據等腰三角形三線合一可證得AD⊥BC,根據直角三角形兩銳角互余可證得結論;(2)根據直角三角形斜邊上的中線等于斜邊的一半可得DG=GE即可得∠GDE=∠GED,證明△DBM∽△ECN,根據相似三角形的性質即可求得NC,繼而可求AM.【詳解】解:(1)∵AB=AC,AD為∠BAC的角平分線,∴AD⊥BC,∴∠FAB+∠B=90°.(2)∵AB=AC,AD是△ABC的角平分線,
∴BD=CD,
∵DE=2BE,
∴BD=CD=3BE,
∴CE=CD+DE=5BE,
∵∠EDF=90°,點G是EF的中點,
∴DG=GE,
∴∠GDE=∠GED,
∵AB=AC,
∴∠B=∠C,∴△DBM∽△ECN,∵MB=3,
∴NC=5,
∵N為AC的中點,
∴AC=2C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機動車商業(yè)保險費率浮動方案告知書
- 智能家居產品市場分析與推廣方案
- 企業(yè)崗位等級晉升制度方案
- 新媒體運營內容策劃方案
- 2025年醫(yī)療AI輔助診斷應用現狀報告
- 國企改革人力資源調整方案
- 混凝土瓦施工方案(3篇)
- 天井樓梯施工方案(3篇)
- 親子出游策劃活動方案(3篇)
- 室外木柱施工方案(3篇)
- 2026年煤礦礦長證考試題庫及答案
- 危重病人營養(yǎng)支持教案
- 《毛澤東思想概論》與《中國特色社會主義理論體系概論》核心知識點梳理及100個自測題(含答案)
- 分級護理質量考核標準
- 電梯安裝文明施工方案
- 天津市專升本高等數學歷年真題(2016-2025)
- DB23∕T 3314-2022 黑龍江省土壤污染防治風險篩選指導值(試行)
- 2025年福建省年省直遴選筆試真題及答案
- 腳手架安全培訓
- 2025年檢驗檢測機構內部質量控制標準模擬考試試題試卷
- 2025云南昆明元朔建設發(fā)展有限公司第一批收費員招聘20人考試參考試題及答案解析
評論
0/150
提交評論