版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Chapter4Diffusion
WHYSTUDYDiffusion?Materialsofalltypesareoftenheat-treatedtoimprovetheirproperties.Thephenomenathatoccurduringaheattreatmentalmostalwaysinvolveatomicdiffusion.Often,anenhancementofdiffusionrateisdesired;onoccasion,measuresaretakentoreduceit.Heattreatingtemperaturesandtimesand/orcoolingratescanoftenbepredictedbyusingthemathematicsofdiffusionandappropriatediffusionconstants.LearningObjectivesAfterstudyingthischapter,youshouldbeabletodothefollowing:1.Nameanddescribethetwoatomicmechanismsofdiffusion.2.Distinguishbetweensteady-stateandnonsteadystatediffusion.3.(a)WriteFick’sfirstandsecondlawsinequationformanddefineallparameters.(b)Notethekindofdiffusionforwhicheachoftheseequationsisnormallyapplied.4.WritethesolutiontoFick’ssecondlawfordiffusionintoasemi-infinitesolidwhentheconcentrationofdiffusingspeciesatthesurfaceisheldconstant.Defineallparametersinthisequation.5.Calculatethediffusioncoefficientforamaterialataspecifiedtemperature,giventheappropriatediffusionconstants.4.1INTRODUCTIONdiffusion:thephenomenonofmaterialtransportbyatomicmotion.perfectmixingpartiallymixedtimedyewaterThisresultindicatesthatcopperatomshavemigratedordiffusedintothenickel,andthatnickelhasdiffusedintocopper.Theprocessbywhichatomsofonemetaldiffuseintoanotheristermedinterdiffusion,orimpuritydiffusion.Diffusionalsooccursforpuremetals,butallatomsexchangingpositionsareofthesametype;thisistermedself-diffusion.4.2DIFFUSIONMECHANISMSFromanatomicperspective,diffusionisjustthestepwisemigrationofatomsfromlatticesitetolatticesite.Infact,theatomsinsolidmaterialsareinconstantmotion,rapidlychangingpositions.Foranatomtomakesuchamove,twoconditionsmustbemet:
(1)theremustbeanemptyadjacentsite(2)theatommusthavesufficientenergytobreakbondswithitsneighboratomsandthencausesomelatticedistortionduringthedisplacement.Ataspecifictemperature,somesmallfractionofthetotalnumberofatomsiscapableofdiffusivemotion,byvirtueofthemagnitudesoftheirvibrationalenergies.Thisfractionincreaseswithrisingtemperature.twodominatemodelsformetallicdiffusionVacancyDiffusionInterstitialDiffusion(1)VacancyDiffusionOnemechanisminvolvestheinterchangeofanatomfromanormallatticepositiontoanadjacentvacantlatticesiteorvacancy,thisprocessnecessitatesthepresenceofvacancies,andtheextenttowhichvacancydiffusioncanoccurisafunctionofthenumberofthesedefectsthatarepresent;significantconcentrationsofvacanciesmayexistinmetalsatelevatedtemperaturesBecausediffusingatomsandvacanciesexchangepositions,thediffusionofatomsinonedirectioncorrespondstothemotionofvacanciesintheoppositedirection.(b)InterstitialDiffusiondiffusioninvolvesatomsthatmigratefromaninterstitialpositiontoaneighboringonethatisempty.Thismechanismisfoundforinterdiffusionofimpuritiessuchashydrogen,carbon,nitrogen,andoxygen,whichhaveatomsthataresmallenoughtofitintotheinterstitialpositionsInmostmetalalloys,interstitialdiffusionoccursmuchmorerapidlythandiffusionbythevacancymode,becausetheinterstitialatomsaresmallerandthusmoremobile.Furthermore,therearemoreemptyinterstitialpositionsthanvacancies;hence,theprobabilityofinterstitialatomicmovementisgreaterthanforvacancydiffusion.4.3FICK’SFIRSTLAWDiffusionisatime-dependentprocess—thatis,inamacroscopicsense,thequantityofanelementthatistransportedwithinanotherisafunctionoftime.Oftenitisnecessarytoknowhowfastdiffusionoccurs,ortherateofmasstransfer.Thisrateisfrequentlyexpressedasadiffusionflux(J),definedasthemass(or,equivalently,thenumberofatoms)Mdiffusingthroughandperpendiculartoaunitcross-sectionalareaofsolidperunitoftime.Inmathematicalform,thismayberepresentedasJ=-DdCdxTheunitsforJarekilogramsoratomspermetersquaredpersecond(kg/m2·soratoms/m2·s).dC/dxistheconcentrationgradient,TheconstantofproportionalityDiscalledthediffusioncoefficient,
whichisexpressedinsquaremeterspersecond.Fick’sfirstlaw.Thenegativesigninthisexpressionindicatesthatthedirectionofdiffusionisdowntheconcentrationgradient,fromahightoalowconcentration.(4.1)Fick’sfirstlawmaybeappliedtothediffusionofatomsofagasthroughathinmetalplateforwhichtheconcentrations(orpressures)ofthediffusingspeciesonbothsurfacesoftheplateareheldconstant.Thisdiffusionprocesseventuallyreachesastatewhereinthediffusionfluxdoesnotchangewithtime—thatis,themassofdiffusingspeciesenteringtheplateonthehigh-pressuresideisequaltothemassexitingfromthelow-pressuresurface—suchthatthereisnonetaccumulationofdiffusingspeciesintheplate.Thisisanexampleofwhatistermedsteady-statediffusion.WhenconcentrationCisplottedversusposition(ordistance)withinthesolidx,theresultingcurveistermedtheconcentrationprofile;furthermore,concentrationgradientistheslopeataparticularpointonthiscurve.Onepracticalexampleofsteady-statediffusionisfoundinthepurificationofhydrogengas.Onesideofathinsheetofpalladiummetalisexposedtotheimpuregascomposedofhydrogenandothergaseousspeciessuchasnitrogen,oxygen,andwatervapor.Thehydrogenselectivelydiffusesthroughthesheettotheoppositeside,whichismaintainedataconstantandlowerhydrogenpressure.H2+othergaseousc1palladiumH2EXAMPLEPROBLEM4.1Aplateofironisexposedtoacarburizing(carbon-rich)atmosphereononesideandadecarburizing(carbon-deficient)atmosphereontheothersideat700℃.Ifaconditionofsteadystateisachieved,calculatethediffusionfluxofcarbonthroughtheplateiftheconcentrationsofcarbonatpositionsof5and10mm(5×10-3
and10-2
m)beneaththecarburizingsurfaceare1.2and0.8kg/m3,respectively.Assumeadiffusioncoefficientof3×10-11m2/satthistemperature.SolutionFick’sfirstlaw,isusedtodeterminethediffusionflux.4.4FICK’SSECONDLAW—NONSTEADY-STATEDIFFUSIONMostpracticaldiffusionsituationsarenonsteady-stateones—thatis,thediffusionfluxandtheconcentrationgradientatsomeparticularpointinasolidvarywithtime,withanetaccumulationordepletionofthediffusingspeciesresulting.Concentrationprofilesfornonsteady-statediffusiontakenatthreedifferenttimes,t1,t2,andt3.Underconditionsofnonsteadystate,thepartialdifferentialequationknownasFick’ssecondlaw,isusedIfthediffusioncoefficientisindependentofcomposition,EquationsimplifiestoThislawstatesthattherateofcompositionalchangeisequaltothediffusivitytimestherateofchangeoftheconcentrationgradient.(4.2)(4.3)SolutionsoftheFick’ssecondlaw
Solutionstothisexpression(concentrationintermsofbothpositionandtime)arepossiblewhenphysicallymeaningfulboundaryconditionsarespecified.Onepracticallyimportantsolutionisforasemi-infinitesolid
inwhichthesurfaceconcentrationisheldconstant.Frequently,thesourceofthediffusingspeciesisagasphase,thepartialpressureofwhichismaintainedataconstantvalue.Furthermore,thefollowingassumptionsaremade:1.Beforediffusion,anyofthediffusingsoluteatomsinthesolidareuniformlydistributedwithconcentrationofC0.2.Thevalueofxatthesurfaceiszeroandincreaseswithdistanceintothesolid.3.Thetimeistakentobezerotheinstantbeforethediffusionprocessbegins.Initialcondition:Fort=0,C=C0at0≤x≤∞Boundaryconditions:Fort>0,C=Cs(theconstantsurfaceconcentration)atx=0Fort>0,C=C0
atx=∞Theseconditionsaresimplystatedasfollows:ApplicationoftheseconditionstoEquation,
yieldsthesolutionwhereCxrepresentstheconcentrationatdepthxaftertimet.
(4.4)
Concentrationprofilefornonsteady-statediffusion;concentrationparametersrelatetoEquationSupposethatitisdesiredtoachievesomespecificconcentrationofsolute,C1,inanalloy;theleft-handsideofEquationandsubsequentlytheright-handsideisalsoaconstantSomediffusioncomputationsarefacilitatedonthebasisofthisrelationship(4.5)EXAMPLEPROBLEM4.2Forsomeapplications,itisnecessarytohardenthesurfaceofasteel(oriron–carbonalloy)abovethatofitsinterior.Onewaythismaybeaccomplishedisbyincreasingthesurfaceconcentrationofcarboninaprocesstermedcarburizing;thesteelpieceisexposed,atanelevatedtemperature,toanatmosphererichinahydrocarbongas,suchasmethane(CH4).Consideronesuchalloythatinitiallyhasauniformcarbonconcentrationof0.25wt%andistobetreatedat950℃.Iftheconcentrationofcarbonatthesurfaceissuddenlybroughttoandmaintainedat1.20wt%,howlongwillittaketoachieveacarboncontentof0.80wt%ataposition0.5mmbelowthesurface?Thediffusioncoefficientforcarboninironatthistemperatureis1.6×10-11
m2/s;assumethatthesteelpieceissemi-infinite.SolutionBecausethisisanonsteady-statediffusionprobleminwhichthesurfacecompositionisheldconstant,Valuesforalltheparametersinthisexpressionexcepttimetarespecifiedintheproblemasfollows:Wemustnowdeterminethevalueofzforwhichtheerrorfunctionis0.4210.Aninterpolationisnecessary,asz=0.392EXAMPLEPROBLEM4.3Thediffusioncoefficientsforcopperinaluminumat500℃
and600℃
are4.8×10-14and5.3×10-13m2/s,respectively.Determinetheapproximatetimeat500℃
thatwillproducethesamediffusionresult(intermsofconcentrationofCuatsomespecificpointinAl)asa10-hheattreatmentat℃.EquationmaybewrittenasSolutionBecauseatboth500℃and600℃
thecompositionremainsthesameatsomeposition,sayx0withtheresultthator4.5EFFECTOFTEMPERATUREONDIFFUSIONINSOLIDSSinceatomdiffusioninvolvesatomicmovements,itistobeexpectedthatbyincreasingthetemperatureofadiffusionsystemwillincreasethediffusionrate.Byexperiment,ithasbeenfoundthatthetemperaturedependenceofthediffusionrateofmanydiffusionsystemscanbeexpressedbythefollowingArrhenius-typeequation:(4.6)where:D0=atemperature-independentpreexponential(m2/s)Qd
=theactivationenergyfordiffusion(J/moloreV/atom)R=thegasconstant,8.31J/mol·Kor8.62×10-5eV/atom·KT=absolutetemperature(K)Theactivationenergymaybethoughtofasthatenergyrequiredtoproducethediffusivemotionofonemoleofatoms.Alargeactivationenergyresultsinarelativelysmalldiffusioncoefficient.(4.6)TakingnaturallogarithmsofEquation4.6yields(4.7)or,intermsoflogarithmstothebase10,(4.8)BecauseD0,Qd,andRareallconstants,Equation4.8takesontheformofanequationofastraightline:whereyandxareanalogous,respectively,tothevariableslogDand1/T.Thus,iflogDisplottedversusthereciprocaloftheabsolutetemperature,astraightlineshouldresult,havingslopeandinterceptof-Qd/2.3RandlogD0,respectively.Thisis,infact,themannerinwhichthevaluesofQd
andD0aredeterminedexperimentally.
Fromsuchaplotforseveralalloysystems,itmaybenotedthatlinearrelationshipsexistforallcasesshown.EXAMPLEPROBLEM4.4UsingthedatainTable,computethediffusioncoefficientformagnesiuminaluminumat550℃.SolutionThisdiffusioncoefficientmaybedeterminedbyapplyingEquation4.6;thevaluesofD0andQd
fromTabl
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/Z 117.101-2026光伏組件電勢(shì)誘導(dǎo)衰減測(cè)試方法第1-1部分:晶體硅組件分層
- 養(yǎng)老院入住老人滿意度調(diào)查與反饋制度
- 企業(yè)員工招聘與離職制度
- 老年終末期患者營(yíng)養(yǎng)不良篩查的標(biāo)準(zhǔn)化方案-1
- 老年糖尿病患者足部自我護(hù)理要點(diǎn)解析
- 口述影像講述員安全知識(shí)競(jìng)賽知識(shí)考核試卷含答案
- 制材工崗前安全文化考核試卷含答案
- 聚甲醛裝置操作工安全專項(xiàng)測(cè)試考核試卷含答案
- 假肢裝配工安全宣教評(píng)優(yōu)考核試卷含答案
- 我國(guó)上市公司定向增發(fā)折扣率影響因素的深度剖析
- 高校區(qū)域技術(shù)轉(zhuǎn)移轉(zhuǎn)化中心(福建)光電顯示、海洋氫能分中心主任招聘2人備考題庫(kù)及答案詳解(考點(diǎn)梳理)
- 航空安保審計(jì)培訓(xùn)課件
- 2026四川成都錦江投資發(fā)展集團(tuán)有限責(zé)任公司招聘18人備考題庫(kù)有答案詳解
- 高層建筑滅火器配置專項(xiàng)施工方案
- 2023-2024學(xué)年廣東深圳紅嶺中學(xué)高二(上)學(xué)段一數(shù)學(xué)試題含答案
- 2025年全國(guó)職業(yè)院校技能大賽中職組(母嬰照護(hù)賽項(xiàng))考試題庫(kù)(含答案)
- 2026江蘇鹽城市阜寧縣科技成果轉(zhuǎn)化服務(wù)中心選調(diào)10人考試參考題庫(kù)及答案解析
- 托管機(jī)構(gòu)客戶投訴處理流程規(guī)范
- 2026年及未來(lái)5年中國(guó)建筑用腳手架行業(yè)發(fā)展?jié)摿Ψ治黾巴顿Y方向研究報(bào)告
- 銀行客戶信息安全課件
- (2025)70周歲以上老年人換長(zhǎng)久駕照三力測(cè)試題庫(kù)(附答案)
評(píng)論
0/150
提交評(píng)論