版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
浙江省麗水學(xué)院附屬高級(jí)中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末達(dá)標(biāo)檢測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.現(xiàn)有1瓶礦泉水,編號(hào)從1至1.若從中抽取6瓶檢驗(yàn),用系統(tǒng)抽樣方法確定所抽的編號(hào)為()A.3,13,23,33,43,53 B.2,14,26,38,42,56C.5,8,31,36,48,54 D.5,10,15,20,25,302.已知函數(shù)的圖像關(guān)于直線對(duì)稱,則可能取值是().A. B. C. D.3.執(zhí)行如圖所示的程序框圖,輸出的s值為A. B.C. D.4.等差數(shù)列的前項(xiàng)和為,,,則()A.21 B.15 C.12 D.95.等差數(shù)列中,已知,則()A.1 B.2 C.3 D.46.設(shè),,,則()A. B. C. D.7.的內(nèi)角的對(duì)邊分別為,面積為,若,則外接圓的半徑為()A. B. C. D.8.為了得到的圖象,只需將的圖象()A.向右平移 B.向左平移 C.向右平移 D.向左平移9.若,則t=()A.32 B.23 C.14 D.1310.點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.體積為8的正方體的頂點(diǎn)都在同一球面上,則該球面的表面積為__________.12.不等式的解集是_______.13.已知數(shù)列中,其中,,那么________14.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為__________.15.平面四邊形中,,則=_______.16.102,238的最大公約數(shù)是________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.某城市理論預(yù)測(cè)2020年到2024屆人口總數(shù)與年份的關(guān)系如下表所示:年份202x(年)01234人口數(shù)y(十萬)5781119(1)請(qǐng)?jiān)谟颐娴淖鴺?biāo)系中畫出上表數(shù)據(jù)的散點(diǎn)圖;(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;(3)據(jù)此估計(jì)2025年該城市人口總數(shù).(參考公式:,)18.如圖所示,在中,點(diǎn)在邊上,,,,.(1)求的值;(2)求的面積.19.如圖,是以向量為邊的平行四邊形,又,試用表示.20.如圖,在直三棱柱中,,二面角為直角,為的中點(diǎn).(1)求證:平面平面;(2)求直線與平面所成的角.21.等差數(shù)列中,,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解題分析】
根據(jù)系統(tǒng)抽樣原則,可知編號(hào)成公差為的等差數(shù)列,觀察選項(xiàng)得到結(jié)果.【題目詳解】根據(jù)系統(tǒng)抽樣原則,可知所抽取編號(hào)應(yīng)成公差為的等差數(shù)列選項(xiàng)編號(hào)公差為;選項(xiàng)編號(hào)不成等差;選項(xiàng)編號(hào)公差為;可知錯(cuò)誤選項(xiàng)編號(hào)滿足公差為的等差數(shù)列,正確本題正確選項(xiàng):【題目點(diǎn)撥】本題考查抽樣方法中的系統(tǒng)抽樣,關(guān)鍵是明確系統(tǒng)抽樣的原則和特點(diǎn),屬于基礎(chǔ)題.2、D【解題分析】
根據(jù)正弦型函數(shù)的對(duì)稱性,可以得到一個(gè)等式,結(jié)合四個(gè)選項(xiàng)選出正確答案.【題目詳解】因?yàn)楹瘮?shù)的圖像關(guān)于直線對(duì)稱,所以有,當(dāng)時(shí),,故本題選D.【題目點(diǎn)撥】本題考查了正弦型函數(shù)的對(duì)稱性,考查了數(shù)學(xué)運(yùn)算能力.3、B【解題分析】分析:初始化數(shù)值,執(zhí)行循環(huán)結(jié)構(gòu),判斷條件是否成立,詳解:初始化數(shù)值循環(huán)結(jié)果執(zhí)行如下:第一次:不成立;第二次:成立,循環(huán)結(jié)束,輸出,故選B.點(diǎn)睛:此題考查循環(huán)結(jié)構(gòu)型程序框圖,解決此類問題的關(guān)鍵在于:第一,要確定是利用當(dāng)型還是直到型循環(huán)結(jié)構(gòu);第二,要準(zhǔn)確表示累計(jì)變量;第三,要注意從哪一步開始循環(huán),弄清進(jìn)入或終止的循環(huán)條件、循環(huán)次數(shù).4、B【解題分析】依題意有,解得,所以.5、B【解題分析】
已知等差數(shù)列中一個(gè)獨(dú)立條件,考慮利用等差中項(xiàng)求解.【題目詳解】因?yàn)闉榈炔顢?shù)列,所以,由,,故選B.【題目點(diǎn)撥】本題考查等差數(shù)列的性質(zhì),等差數(shù)列中若,則,或用基本量、表示,整體代換計(jì)算可得,屬于簡(jiǎn)單題.6、B【解題分析】
根據(jù)與特殊點(diǎn)的比較可得因?yàn)?,,從而得到,得出答案.【題目詳解】解:因?yàn)?,,所以.故選:B【題目點(diǎn)撥】本題主要考查指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)的問題,要熟記一些特殊點(diǎn),如,,.7、A【解題分析】
出現(xiàn)面積,可轉(zhuǎn)化為觀察,和余弦定理很相似,但是有差別,差別就是條件是形式,而余弦定理中是形式,但是我們可以注意到:,所以可以完成本題.【題目詳解】由,所以在三角形中,再由正弦定理所以答案選擇A.【題目點(diǎn)撥】本題很靈活,在常數(shù)4的處理問題上有點(diǎn)巧妙,然后再借助余弦定理及正弦定理,難度較大.8、B【解題分析】
先利用誘導(dǎo)公式將函數(shù)化成正弦函數(shù)的形式,再根據(jù)平移變換,即可得答案.【題目詳解】∵,∵,∴只需將的圖象向左平移可得.故選:B.【題目點(diǎn)撥】本題考查誘導(dǎo)公式、三角函數(shù)的平移變換,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意平移是針對(duì)自變量而言的.9、B【解題分析】
先計(jì)算得到,再根據(jù)得到等式解得答案.【題目詳解】故答案選B【題目點(diǎn)撥】本題考查了向量的計(jì)算,意在考查學(xué)生對(duì)于向量運(yùn)算法則的靈活運(yùn)用及計(jì)算能力.10、D【解題分析】令,設(shè)對(duì)稱點(diǎn)的坐標(biāo)為,可得的中點(diǎn)在直線上,故可得①,又可得的斜率,由垂直關(guān)系可得②,聯(lián)立①②解得,即對(duì)稱點(diǎn)的坐標(biāo)為,故選D.點(diǎn)睛:本題考查對(duì)稱問題,得出中點(diǎn)在直線且連線與已知直線垂直是解決問題的關(guān)鍵,屬中檔題;點(diǎn)關(guān)于直線成軸對(duì)稱問題,由軸對(duì)稱定義知,對(duì)稱軸即為兩對(duì)稱點(diǎn)連線的“垂直平分線”,利用“垂直”即斜率關(guān)系,“平分”即中點(diǎn)在直線上這兩個(gè)條件建立方程組,就可求出對(duì)稱點(diǎn)的坐標(biāo).二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】正方體體積為8,可知其邊長(zhǎng)為2,正方體的體對(duì)角線為=2,即為球的直徑,所以半徑為,所以球的表面積為=12π.故答案為:12π.點(diǎn)睛:設(shè)幾何體底面外接圓半徑為,常見的圖形有正三角形,直角三角形,矩形,它們的外心可用其幾何性質(zhì)求;而其它不規(guī)則圖形的外心,可利用正弦定理來求.若長(zhǎng)方體長(zhǎng)寬高分別為則其體對(duì)角線長(zhǎng)為;長(zhǎng)方體的外接球球心是其體對(duì)角線中點(diǎn).找?guī)缀误w外接球球心的一般方法:過幾何體各個(gè)面的外心分別做這個(gè)面的垂線,交點(diǎn)即為球心.三棱錐三條側(cè)棱兩兩垂直,且棱長(zhǎng)分別為,則其外接球半徑公式為:.12、【解題分析】
且,然后解一元二次不等式可得解集.【題目詳解】解:,∴且,或,不等式的解集為,故答案為:.【題目點(diǎn)撥】本題主要考查分式不等式的解法,關(guān)鍵是將分式不等式轉(zhuǎn)化為其等價(jià)形式,屬于基礎(chǔ)題.13、1【解題分析】
由已知數(shù)列遞推式可得數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,然后利用等比數(shù)列的通項(xiàng)公式求解.【題目詳解】由,得,,則數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,.故答案為:1.【題目點(diǎn)撥】本題考查數(shù)列的遞推關(guān)系、等比數(shù)列通項(xiàng)公式,考查運(yùn)算求解能力,特別是對(duì)復(fù)雜式子的理解.14、1【解題分析】
由已知中的程序語(yǔ)句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算S的值并輸出變量i的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案.【題目詳解】模擬程序的運(yùn)行,可得
S=1,i=1
滿足條件S<40,執(zhí)行循環(huán)體,S=3,i=2
滿足條件S<40,執(zhí)行循環(huán)體,S=7,i=3
滿足條件S<40,執(zhí)行循環(huán)體,S=15,i=4
滿足條件S<40,執(zhí)行循環(huán)體,S=31,i=5
滿足條件S<40,執(zhí)行循環(huán)體,S=13,i=1
此時(shí),不滿足條件S<40,退出循環(huán),輸出i的值為1.
故答案為:1.【題目點(diǎn)撥】本題主要考查的是程序框圖,屬于基礎(chǔ)題.在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運(yùn)算方法逐次計(jì)算,直到達(dá)到輸出條件即可.15、【解題分析】
先求出,再求出,再利用余弦定理求出AD得解.【題目詳解】依題意得中,,故.在中,由正弦定理可知,,得.在中,因?yàn)椋剩畡t.在中,由余弦定理可知,,即.得.【題目點(diǎn)撥】本題主要考查正弦定理余弦定理解三角形,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于中檔題.16、34【解題分析】試題分析:根據(jù)輾轉(zhuǎn)相除法的含義,可得238=2×102+34,102=3×34,所以得兩個(gè)數(shù)102、238的最大公約數(shù)是34.故答案為34.考點(diǎn):輾轉(zhuǎn)相除法.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2);(3)2025年該城市人口總數(shù)為196萬人【解題分析】
(1)由表中數(shù)據(jù)描點(diǎn)即可;(2)由最小二乘法的公式得出的值,即可得出該線性方程;(3)將代入(2)中的線性方程,即可得出2025年該城市人口總數(shù).【題目詳解】(1)畫出散點(diǎn)圖如圖所示.(2),,,,,,則線性回歸方程.(3)時(shí),(十萬)(萬).答:估計(jì)2025年該城市人口總數(shù)為196萬人【題目點(diǎn)撥】本題主要考查了繪制散點(diǎn)圖,求回歸直線方程以及根據(jù)回歸方程進(jìn)行數(shù)據(jù)估計(jì),屬于中檔題.18、(1)(2)【解題分析】
(1)設(shè),分別在和中利用余弦定理計(jì)算,聯(lián)立方程組,求得的值,再由余弦定理,即可求解的值;(2)由(1)的結(jié)論,計(jì)算,利用三角形的面積公式,即可求解.【題目詳解】(1),則,所以在中,由余弦定理得,在中,由余弦定理得,所以,解得,所以,由余弦定理得(2)由(1)求得,,所以,所以.【題目點(diǎn)撥】本題主要考查了余弦定理和三角形的面積公式的應(yīng)用,其中在解有關(guān)三角形的題目時(shí),要抓住題設(shè)條件和利用某個(gè)定理的信息,合理應(yīng)用正弦定理和余弦定理列出方程是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.19、,,【解題分析】試題分析:利用向量的加減法的幾何意義得,再結(jié)合已知及圖形得最后求出.試題解析:解:考點(diǎn):向量的加減法的幾何意義20、(1)證明見詳解;(2).【解題分析】
(1)先證明平面,再推出面面垂直;(2)由(1)可知即為所求,在三角形中求角即可.【題目詳解】(1)證明:因?yàn)?,所以;又為的中點(diǎn),所以.在直三棱柱中,平面.又因?yàn)槠矫嬷?,所以,因?yàn)?,所以平面,又因?yàn)槠矫?,所以平面平?(2)由(1)知為在平面內(nèi)的射影,所以為直線與平面所成的角,設(shè),則,在中,,在中,,又,得,因此直線與平面所成的角為.【題目點(diǎn)撥】本題第一問考查由線面垂直證明面面垂直,第二問考查線面角的求解,屬綜合基礎(chǔ)題.21、(1);
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)院醫(yī)保科年度工作總結(jié)
- 退役軍人服務(wù)保障體系標(biāo)準(zhǔn)化建設(shè)
- 求職者面試技巧全套教程
- 一般工貿(mào)行業(yè)新員工三級(jí)安全培訓(xùn)考試試題及答案
- 建設(shè)工程施工合同糾紛要素式起訴狀模板修改無約束
- 不用熬夜寫!建設(shè)工程施工合同糾紛要素式起訴狀模板現(xiàn)成用
- 保險(xiǎn)講師培訓(xùn)
- 環(huán)境友好催化技術(shù)課件
- 調(diào)色年終總結(jié)和配料(3篇)
- 公務(wù)員法執(zhí)行情況自查報(bào)告
- 枕骨骨折的護(hù)理課件
- TCEC電力行業(yè)數(shù)據(jù)分類分級(jí)規(guī)范-2024
- 駱駝的養(yǎng)殖技術(shù)與常見病防治
- GB/T 26951-2025焊縫無損檢測(cè)磁粉檢測(cè)
- 2025及未來5-10年高壓管匯項(xiàng)目投資價(jià)值市場(chǎng)數(shù)據(jù)分析報(bào)告
- 《國(guó)家十五五規(guī)劃綱要》全文
- 腹部手術(shù)圍手術(shù)期疼痛管理指南(2025版)課件
- 2025年衛(wèi)生人才評(píng)價(jià)考試(臨床醫(yī)學(xué)工程技術(shù)中級(jí))歷年參考題庫(kù)含答案
- 呼吸康復(fù)科普脫口秀
- 2025年《思想道德與法治》期末考試題庫(kù)及答案
- 2025初一英語(yǔ)閱讀理解100篇
評(píng)論
0/150
提交評(píng)論