菏澤市重點中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末調(diào)研模擬試題含解析_第1頁
菏澤市重點中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末調(diào)研模擬試題含解析_第2頁
菏澤市重點中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末調(diào)研模擬試題含解析_第3頁
菏澤市重點中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末調(diào)研模擬試題含解析_第4頁
菏澤市重點中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

菏澤市重點中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末調(diào)研模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖是一個正方體的表面展開圖,若圖中“努”在正方體的后面,那么這個正方體的前面是()A.定 B.有 C.收 D.獲2.若集合A={x|2≤x<4},?B={x|x>3}A.{x|3≤x<4} B.{x|3<x<4} C.{x|2≤x<3} D.{x|2≤x≤3}3.在中,角所對的邊分別為.若,,,則等于()A. B. C. D.4.利用斜二測畫法得到的:①三角形的直觀圖是三角形;②平行四邊形的直觀圖是平行四邊形;③相等的角在直觀圖中仍然相等;④正方形的直觀圖是正方形.以上結(jié)論正確的是()A.①② B.① C.③④ D.①②③④5.《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為:弧田面積(弦矢+矢).弧田,由圓弧和其所對弦所圍成.公式中“弦”指圓弧所對的弦長,“矢”等于半徑長與圓心到弦的距離之差.現(xiàn)有圓心角為,弦長等于的弧田.按照《九章算術(shù)》中弧田面積的經(jīng)驗公式計算所得弧田面積為()A. B. C. D.6.在等比數(shù)列{an}中,a2=8,a5=64,,則公比q為()A.2 B.3 C.4 D.87.在空間中,可以確定一個平面的條件是()A.一條直線B.不共線的三個點C.任意的三個點D.兩條直線8.在中,,則這個三角形的形狀為()A.銳角三角形 B.鈍角三角形 C.直角三角形 D.等腰三角形9.某社區(qū)義工隊有24名成員,他們年齡的莖葉圖如下表所示,先將他們按年齡從小到大編號為1至24號,再用系統(tǒng)抽樣方法抽出6人組成一個工作小組,則這個小組年齡不超過55歲的人數(shù)為()3940112551366778889600123345A.1 B.2 C.3 D.410.已知點在角的終邊上,函數(shù)圖象上與軸最近的兩個對稱中心間的距離為,則的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè),過定點A的動直線和過定點B的動直線交于點,則的最大值是.12.在中,角,,所對的邊分別為,,,若的面積為,且,,成等差數(shù)列,則最小值為______.13.在中,,,是角,,所對應(yīng)的邊,,,如果,則________.14.如圖,在中,,,點D為BC的中點,設(shè),.的值為___________.15.在邊長為2的菱形中,,是對角線與的交點,若點是線段上的動點,且點關(guān)于點的對稱點為,則的最小值為______.16.已知三點、、共線,則a=_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知在四棱錐中,底面是矩形,平面,,分別是,的中點,與平面所成的角的正切值是;(1)求證:平面;(2)求二面角的正切值.18.已知圓C的方程是(x-1)2+(y-1)2=4,直線l的方程為y=x+m,求當(dāng)m為何值時,(1)直線平分圓;(2)直線與圓相切.19.近日,某地普降暴雨,當(dāng)?shù)匾淮笮吞釅伟l(fā)生了滲水現(xiàn)象,當(dāng)發(fā)現(xiàn)時已有的壩面滲水,經(jīng)測算,壩而每平方米發(fā)生滲水現(xiàn)象的直接經(jīng)濟(jì)損失約為元,且滲水面積以每天的速度擴(kuò)散.當(dāng)?shù)赜嘘P(guān)部門在發(fā)現(xiàn)的同時立即組織人員搶修滲水壩面,假定每位搶修人員平均每天可搶修滲水面積,該部門需支出服裝補貼費為每人元,勞務(wù)費及耗材費為每人每天元.若安排名人員參與搶修,需要天完成搶修工作.寫出關(guān)于的函數(shù)關(guān)系式;應(yīng)安排多少名人員參與搶修,才能使總損失最?。倱p失=因滲水造成的直接損失+部門的各項支出費用)20.在等差數(shù)列中,,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.21.正項數(shù)列的前項和為,且.(Ⅰ)試求數(shù)列的通項公式;(Ⅱ)設(shè),求的前項和為.(Ⅲ)在(Ⅱ)的條件下,若對一切恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】

利用正方體及其表面展開圖的特點以及題意解題,把“努”在正方體的后面,然后把平面展開圖折成正方體,然后看“努”相對面.【題目詳解】解:這是一個正方體的平面展開圖,共有六個面,其中面“努”與面“有”相對,所以圖中“努”在正方體的后面,則這個正方體的前面是“有”.故選:.【題目點撥】本題考查了正方形相對兩個面上的文字問題,同時考查空間想象能力.注意正方體的空間圖形,從相對面入手,分析及解答問題,屬于基礎(chǔ)題.2、B【解題分析】

根據(jù)交集定義計算.【題目詳解】由題意A∩B={x|3<x<4}.故選B.【題目點撥】本題考查集合的交集運算,屬于基礎(chǔ)題.3、B【解題分析】

利用正弦定理可求.【題目詳解】由正弦定理得.故選B.【題目點撥】本題考查正弦定理的應(yīng)用,屬于容易題.4、A【解題分析】

由直觀圖的畫法和相關(guān)性質(zhì),逐一進(jìn)行判斷即可.【題目詳解】斜二側(cè)畫法會使直觀圖中的角度不同,也會使得沿垂直于水平線方向的長度與原圖不同,而多邊形的邊數(shù)不會改變,同時平行直線之間的位置關(guān)系依舊保持平行,故:①②正確,③和④不對,因為角度會發(fā)生改變.故選:A.【題目點撥】本題考查斜二側(cè)畫法的相關(guān)性質(zhì),注意角度是發(fā)生改變的,這是易錯點.5、C【解題分析】

首先根據(jù)圖形計算出矢,弦,再帶入弧田面積公式即可.【題目詳解】如圖所示:因為,,為等邊三角形.所以,矢,弦..故選:C【題目點撥】本題主要考查扇形面積公式,同時考查學(xué)生對題意的理解,屬于中檔題.6、A【解題分析】,選A.7、B【解題分析】試題分析:根據(jù)平面的基本性質(zhì)及推論,即確定平面的幾何條件,即可知道答案.解:對于A.過一條直線可以有無數(shù)個平面,故錯;對于C.過共線的三個點可以有無數(shù)個平面,故錯;對于D.過異面的兩條直線不能確定平面,故錯;由平面的基本性質(zhì)及推論知B正確.故選B.考點:平面的基本性質(zhì)及推論.8、B【解題分析】解:9、B【解題分析】

求出樣本間隔,結(jié)合莖葉圖求出年齡不超過55歲的有8人,然后進(jìn)行計算即可.【題目詳解】解:樣本間隔為,年齡不超過55歲的有8人,則這個小組中年齡不超過55歲的人數(shù)為人.故選:.【題目點撥】本題主要考查莖葉圖以及系統(tǒng)抽樣的應(yīng)用,求出樣本間隔是解決本題的關(guān)鍵,屬于基礎(chǔ)題.10、C【解題分析】由題意,則,即,則;又由三角函數(shù)的定義可得,則,應(yīng)選答案C.二、填空題:本大題共6小題,每小題5分,共30分。11、5【解題分析】試題分析:易得.設(shè),則消去得:,所以點P在以AB為直徑的圓上,,所以,.法二、因為兩直線的斜率互為負(fù)倒數(shù),所以,點P的軌跡是以AB為直徑的圓.以下同法一.【考點定位】1、直線與圓;2、重要不等式.12、4【解題分析】

先根據(jù),,成等差數(shù)列得到,再根據(jù)余弦定理得到滿足的等式關(guān)系,而由面積可得,利用基本不等式可求的最小值.【題目詳解】因為,,成等差數(shù)列,,故.由余弦定理可得.由基本不等式可以得到,當(dāng)且僅當(dāng)時等號成立.因為,所以,所以即,當(dāng)且僅當(dāng)時等號成立.故填4.【題目點撥】三角形中與邊有關(guān)的最值問題,可根據(jù)題設(shè)條件找到各邊的等式關(guān)系或角的等量關(guān)系,再根據(jù)邊的關(guān)系式的結(jié)構(gòu)特征選用合適的基本不等式求最值,也可以利用正弦定理把與邊有關(guān)的目標(biāo)代數(shù)式轉(zhuǎn)化為與角有關(guān)的三角函數(shù)式后再求其最值.13、【解題分析】

首先利用同角三角函數(shù)的基本關(guān)系求出,再利用正弦定理即可求解.【題目詳解】在中,,,即,,,即,,,,,即,,,即,,,由正弦定理得,,,故答案為:【題目點撥】本題考查了同角三角函數(shù)的基本關(guān)系以及正弦定理解三角形,需熟記公式,屬于基礎(chǔ)題.14、【解題分析】

在和在中,根據(jù)正弦定理,分別表示出.由可得等式,代入已知條件化簡即可得解.【題目詳解】在中,由正弦定理可得,則在中,由正弦定理可得,則點D為BC的中點,則所以因為,,由誘導(dǎo)公式可知代入上述兩式可得所以故答案為:【題目點撥】本題考查了正弦定理的簡單應(yīng)用,屬于基礎(chǔ)題.15、-6【解題分析】

由題意,然后結(jié)合向量共線及數(shù)量積運算可得,再將已知條件代入求解即可.【題目詳解】解:菱形的對稱性知,在線段上,且,設(shè),則,所以,又因為,當(dāng)時,取得最小值-6.故答案為:-6.【題目點撥】本題考查了平面向量的線性運算,重點考查了向量共線及數(shù)量積運算,屬中檔題.16、【解題分析】

由三點、、共線,則有,再利用向量共線的坐標(biāo)運算即可得解.【題目詳解】解:由、、,則,,又三點、、共線,則,則,解得:,故答案為:.【題目點撥】本題考查了向量共線的坐標(biāo)運算,屬基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解題分析】

(1)取的中點,連接,通過證明四邊形是平行四邊形,證得,從而證得平面.(2)連接,證得為與平面所成角.根據(jù)的值求得的長,作出二面角的平面角并證明,解直角三角形求得二面角的正切值.【題目詳解】(1)證明:取的中點,連接.∵是中點∴又是的中點,∴∴,從而四邊形是平行四邊形,故又平面,平面,∴(2)∵平面,∴是在平面內(nèi)的射影為與平面所成角,四邊形為矩形,∵,∴,∴過點作交的延長線于,連接,∵平面據(jù)三垂線定理知.∴是二面角的平面角易知道為等腰直角三角形,∴∴=∴二面角的正切值為【題目點撥】本小題主要考查線面平行的證明,考查線面角的定義和應(yīng)用,考查面面角的正切值的求法,考查邏輯推理能力和空間想象能力,屬于中檔題.18、(1)m=0;(2)m=±2.【解題分析】試題分析:(1)直線平分圓,即直線過圓心,將圓心坐標(biāo)代入直線方程可得m值(2)根據(jù)圓心到直線距離等于半徑列方程,解得m值試題解析:解:(1)∵直線平分圓,所以圓心在直線y=x+m上,即有m=0.(2)∵直線與圓相切,所以圓心到直線的距離等于半徑,∴d==2,m=±2.即m=±2時,直線l與圓相切.點睛:判斷直線與圓的位置關(guān)系的常見方法(1)幾何法:利用d與r的關(guān)系.(2)代數(shù)法:聯(lián)立方程之后利用Δ判斷.(3)點與圓的位置關(guān)系法:若直線恒過定點且定點在圓內(nèi),可判斷直線與圓相交.上述方法中最常用的是幾何法,點與圓的位置關(guān)系法適用于動直線問題.19、(1)(2)應(yīng)安排名民工參與搶修,才能使總損失最小【解題分析】

(1)由題意得要搶修完成必須使得搶修的面積等于滲水的面積,即可得,所以;(2)損失包=滲水直接經(jīng)濟(jì)損失+搶修服裝補貼費+勞務(wù)費耗材費,即可得到函數(shù)解析式,再利用基本不等式,即可得到結(jié)果.【題目詳解】由題意,可得,所以.設(shè)總損失為元,則當(dāng)且僅當(dāng),即時,等號成立,所以應(yīng)安排名民工參與搶修,才能使總損失最小.【題目點撥】本題主要考查了函數(shù)的實際應(yīng)用問題,以及基本不等式求最值的應(yīng)用,其中解答中認(rèn)真審題是關(guān)鍵,以及合理運用函數(shù)與不等式方程思想的有機(jī)結(jié)合,及基本不等式的應(yīng)用是解答的關(guān)鍵,屬于中檔題,著重考查了分析問題和解答問題的能力.20、(1)(2)【解題分析】

(1)利用等差數(shù)列的性質(zhì)可求出,進(jìn)而可求出的通項公式;(2),由裂項相消求和法可求出.【題目詳解】解:(1)設(shè)等差數(shù)列的公差為,則.因為所以,解得,,所以數(shù)列的通項公式為.(2)由題意知,所以.【題目點撥】本題考查了等差數(shù)列的通項公式的求法,考查了利用裂項相消求數(shù)列的前項和,屬于基礎(chǔ)題.21、(Ⅰ);(Ⅱ);(Ⅲ).【解題分析】

(Ⅰ)將所給條件式子兩邊同時平方,利用遞推法可得的表達(dá)式,由兩式相減,變形即可證明數(shù)列為等差數(shù)列,進(jìn)而結(jié)合首項與公差求得的通項公式.(Ⅱ)由(Ⅰ)中可求得.將與代入即可求得數(shù)列的通項公式,利用裂項法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論