2024屆廣東省汕頭市潮南實驗學(xué)校校數(shù)學(xué)高一第二學(xué)期期末綜合測試試題含解析_第1頁
2024屆廣東省汕頭市潮南實驗學(xué)校校數(shù)學(xué)高一第二學(xué)期期末綜合測試試題含解析_第2頁
2024屆廣東省汕頭市潮南實驗學(xué)校校數(shù)學(xué)高一第二學(xué)期期末綜合測試試題含解析_第3頁
2024屆廣東省汕頭市潮南實驗學(xué)校校數(shù)學(xué)高一第二學(xué)期期末綜合測試試題含解析_第4頁
2024屆廣東省汕頭市潮南實驗學(xué)校校數(shù)學(xué)高一第二學(xué)期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆廣東省汕頭市潮南實驗學(xué)校校數(shù)學(xué)高一第二學(xué)期期末綜合測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)數(shù)列滿足,且,則數(shù)列中的最大項為()A. B. C. D.2.設(shè)是等比數(shù)列,則“”是“數(shù)列是遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件3.已知函數(shù)的部分圖象如圖所示,則函數(shù)的表達(dá)式是()A. B.C. D.4.設(shè)等比數(shù)列的前項和為,且,則()A.255 B.375 C.250 D.2005.下列函數(shù)中,在區(qū)間上是減函數(shù)的是()A. B. C. D.6.圓x-12+y-3A.1 B.2 C.2 D.37.在三棱錐中,,,則三棱錐外接球的體積是()A. B. C. D.8.設(shè)向量,,則是的A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件9.為了得到函數(shù)的圖像,可以將函數(shù)的圖像()A.向右平移個長度單位 B.向左平移個長度單位C.向右平移個長度單位 D.向左平移個長度單位10.已知,,,則它們的大小關(guān)系是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.?dāng)?shù)列滿足,當(dāng)時,,則是否存在不小于2的正整數(shù),使成立?若存在,則在橫線處直接填寫的值;若不存在,就填寫“不存在”_______.12.已知,那么__________.13.設(shè)數(shù)列{an}滿足a1=1,且an+1﹣an=n+1(n∈N*),則數(shù)列{}的前10項的和為__.14.已知,各項均為正數(shù)的數(shù)列滿足,,若,則的值是.15.在中,角所對的邊分別為,下列命題正確的是_____________.①總存在某個內(nèi)角,使得;②存在某鈍角,有;③若,則的最小角小于.16.等比數(shù)列的首項為,公比為,記,則數(shù)列的最大項是第___________項.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某大橋是交通要塞,每天擔(dān)負(fù)著巨大的車流量.已知其車流量(單位:千輛)是時間(,單位:)的函數(shù),記為,下表是某日橋上的車流量的數(shù)據(jù):03691215182124(千輛)3.01.02.95.03.11.03.15.03.1經(jīng)長期觀察,函數(shù)的圖象可以近似地看做函數(shù)(其中,,,)的圖象.(1)根據(jù)以上數(shù)據(jù),求函數(shù)的近似解析式;(2)為了緩解交通壓力,有關(guān)交通部門規(guī)定:若車流量超過4千輛時,核定載質(zhì)量10噸及以上的大貨車將禁止通行,試估計一天內(nèi)將有多少小時不允許這種貨車通行?18.為了對某課題進(jìn)行研究,用分層抽樣方法從三所高校,,的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人).高校相關(guān)人員抽取人數(shù)A18B362C54(1)求,;(2)若從高校,抽取的人中選2人做專題發(fā)言,求這2人都來自高校的概率.19.設(shè)銳角三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,(Ⅰ)求B的大小;(Ⅱ)若,求的取值范圍.20.記數(shù)列的前項和為,已知點在函數(shù)的圖像上.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè),求數(shù)列的前項和.21.已知函數(shù),且,.(1)求該函數(shù)的最小正周期及對稱中心坐標(biāo);(2)若方程的根為,且,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

利用累加法求得的通項公式,再根據(jù)的單調(diào)性求得最大項.【題目詳解】因為故故則,其最大項是的最小項的倒數(shù),又,當(dāng)且僅當(dāng)或時,取得最小值7.故得最大項為.故選:A.【題目點撥】本題考查由累加法求數(shù)列的通項公式,以及數(shù)列的單調(diào)性,屬綜合基礎(chǔ)題.2、B【解題分析】

由,可得,解得或,根據(jù)等比數(shù)列的單調(diào)性的判定方法,結(jié)合充分、必要條件的判定方法,即可求解,得到答案.【題目詳解】設(shè)等比數(shù)列的公比為,則,可得,解得或,此時數(shù)列不一定是遞增數(shù)列;若數(shù)列為遞增數(shù)列,可得或,所以“”是“數(shù)列為遞增數(shù)列”的必要不充分條件.故選:B.【題目點撥】本題主要考查了等比數(shù)列的通項公式與單調(diào)性,以及充分條件、必要條件的判定,其中解答中熟記等比數(shù)列的單調(diào)性的判定方法是解答本題的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.3、D【解題分析】

根據(jù)函數(shù)的最值求得,根據(jù)函數(shù)的周期求得,根據(jù)函數(shù)圖像上一點的坐標(biāo)求得,由此求得函數(shù)的解析式.【題目詳解】由題圖可知,且即,所以,將點的坐標(biāo)代入函數(shù),得,即,因為,所以,所以函數(shù)的表達(dá)式為.故選D.【題目點撥】本小題主要考查根據(jù)三角函數(shù)圖像求三角函數(shù)的解析式,屬于基礎(chǔ)題.4、A【解題分析】

由等比數(shù)列的性質(zhì),仍是等比數(shù)列,先由是等比數(shù)列求出,再由是等比數(shù)列,可得.【題目詳解】由題得,成等比數(shù)列,則有,,解得,同理有,,解得.故選:A【題目點撥】本題考查等比數(shù)列前n項和的性質(zhì),這道題也可以先由求出數(shù)列的首項和公比q,再由前n項和公式直接得。5、C【解題分析】

根據(jù)初等函數(shù)的單調(diào)性對各個選項的函數(shù)的解析式進(jìn)行逐一判斷【題目詳解】函數(shù)在單調(diào)遞增,在單調(diào)遞增.

在單調(diào)遞減,在單調(diào)遞增.故選:C【題目點撥】本題主要考查了基本初等函數(shù)的單調(diào)性的判斷,屬于基礎(chǔ)試題.6、C【解題分析】

先計算圓心到y(tǒng)軸的距離,再利用勾股定理得到弦長.【題目詳解】x-12+y-32=2圓心到y(tǒng)軸的距離d=1弦長l=2r故答案選C【題目點撥】本題考查了圓的弦長公式,意在考查學(xué)生的計算能力.7、B【解題分析】

三棱錐是正三棱錐,取為外接圓的圓心,連結(jié),則平面,設(shè)為三棱錐外接球的球心,外接球的半徑為,可求出,然后由可求出半徑,進(jìn)而求出外接球的體積.【題目詳解】由題意,易知三棱錐是正三棱錐,取為外接圓的圓心,連結(jié),則平面,設(shè)為三棱錐外接球的球心.因為,所以.因為,所以.設(shè)三棱錐外接球的半徑為,則,解得,故三棱錐外接球的體積是.故選B.【題目點撥】本題考查了三棱錐的外接球體積的求法,考查了學(xué)生的空間想象能力與計算求解能力,屬于中檔題.8、C【解題分析】

利用向量共線的性質(zhì)求得,由充分條件與必要條件的定義可得結(jié)論.【題目詳解】因為向量,,所以,即可以得到,不能推出,是“”的必要不充分條件,故選C.【題目點撥】本題主要考查向量共線的性質(zhì)、充分條件與必要條件的定義,屬于中檔題.利用向量的位置關(guān)系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.9、D【解題分析】

根據(jù)三角函數(shù)的圖象平移的原則,即左加右減,即可得答案.【題目詳解】由,可以將函數(shù)圖象向左平移個長度單位即可,故選:D.【題目點撥】本題考查三角函數(shù)的平移變換,求解時注意平移變換是針對自變量而言的,同時要注意是由誰變換到誰.10、C【解題分析】因為,,故選C.二、填空題:本大題共6小題,每小題5分,共30分。11、70【解題分析】

構(gòu)造數(shù)列,兩式與相減可得數(shù)列{}為等差數(shù)列,求出,讓=0即可求出.【題目詳解】設(shè)兩式相減得又?jǐn)?shù)列從第5項開始為等差數(shù)列,由已知易得均不為0所以當(dāng)n=70的時候成立,故答案填70.【題目點撥】如果遞推式中出現(xiàn)和的形式,比如,可以嘗試退項相減,即讓取后,兩式作差,和的部分因為相減而抵消,剩下的就好算了。12、2017【解題分析】,故,由此得.【題目點撥】本題主要考查函數(shù)解析式的求解方法,考查等比數(shù)列前項和的計算公式.對于函數(shù)解析式的求法,有兩種,一種是換元法,另一種的變換法.解析中運(yùn)用的方法就是變換法,即將變換為含有的式子.也可以令.等比數(shù)列求和公式為.13、【解題分析】試題分析:∵數(shù)列滿足,且,∴當(dāng)時,.當(dāng)時,上式也成立,∴.∴.∴數(shù)列的前項的和.∴數(shù)列的前項的和為.故答案為.考點:(1)數(shù)列遞推式;(2)數(shù)列求和.14、【解題分析】

由題意得,依次求得,,,,,∵,且>0,∴,依次求得======,∴+=+=.考點:數(shù)列的遞推公式.15、①③【解題分析】

①中,根據(jù)直角三角形、銳角三角形和鈍角三角形分類討論,得出必要一個角在內(nèi),即可判定;②中,利用兩角和的正切公式,化簡得到,根據(jù)鈍角三角形,即可判定;③中,利用向量的運(yùn)算,得到,由于不共線,得到,再由余弦定理,即可判定.【題目詳解】由題意,對于①中,在中,當(dāng),則,若為直角三角形,則必有一個角在內(nèi);若為銳角三角形,則必有一個內(nèi)角小于等于;若為鈍角三角形,也必有一個角小于內(nèi),所以總存在某個內(nèi)角,使得,所以是正確的;對于②中,在中,由,可得,由為鈍角三角形,所以,所以,所以不正確;對于③中,若,即,即,由于不共線,所以,即,由余弦定理可得,所以最小角小于,所以是正確的.綜上可得,命題正確的是①③.故答案為:①③.【題目點撥】本題以真假命題為載體,考查了正弦、余弦定理的應(yīng)用,以及向量的運(yùn)算及應(yīng)用,其中解答中熟練應(yīng)用解三角形的知識和向量的運(yùn)算進(jìn)行化簡是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.16、【解題分析】

求得,則可將問題轉(zhuǎn)化為求使得最大且使得為偶數(shù)的正整數(shù)的值,利用二次函數(shù)的基本性質(zhì)求解即可.【題目詳解】由等比數(shù)列的通項公式可得,,則問題轉(zhuǎn)化為求使得最大且使得為偶數(shù)的正整數(shù)的值,,當(dāng)時,取得最大值,此時為偶數(shù).因此,的最大項是第項.故答案為:.【題目點撥】本題考查等比數(shù)列前項積最值的計算,將問題進(jìn)行轉(zhuǎn)化是解題的關(guān)鍵,考查分析問題和解決問題的能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)8個小時【解題分析】

(1)根據(jù)函數(shù)的最大最小值可求出和,根據(jù)周期求出,根據(jù)一個最高點的橫坐標(biāo)可求得;

(2)解不等式可得.【題目詳解】(1)根據(jù)表格中的數(shù)據(jù)可得:由,,解得:

由當(dāng)時,有最大值,則即,得.

所以函數(shù)的近似解析式(2)若車流量超過4千輛時,即

所以,則所以,且.所以和滿足條件.所以估計一天內(nèi)將有8小時不允許這種貨車通行.【題目點撥】本題考查了根據(jù)一些特殊的函數(shù)值觀察周期特點,求解三角函數(shù)解析式以及簡單應(yīng)用,屬中檔題.18、(1),(2)【解題分析】

(1)根據(jù)分層抽樣的概念,可得,求解即可;(2)分別記從高校抽取的2人為,,從高校抽取的3人為,,,先列出從5人中選2人作專題發(fā)言的基本事件,再列出2人都來自高校的基本事件,進(jìn)而求出概率【題目詳解】(1)由題意可得,所以,(2)記從高校抽取的2人為,,從高校抽取的3人為,,,則從高校,抽取的5人中選2人作專題發(fā)言的基本事件有,,,,,,,,,共10種設(shè)選中的2人都來自高校的事件為,則包含的基本事件有,,共3種因此,故選中的2人都來自高校的概率為【題目點撥】本題考查分層抽樣,考查古典概型,屬于基礎(chǔ)題19、(1)(2)【解題分析】

(Ⅰ)由條件利用正弦定理求得sinB的值,可得B的值(Ⅱ)使用正弦定理用sinA,sinC表示出a,c,得出a+c關(guān)于A的三角函數(shù),根據(jù)A的范圍和正弦函數(shù)的性質(zhì)得出a+c的最值.【題目詳解】解(Ⅰ)銳角又,,由正弦定理得,∴.

∴的取值范圍為【題目點撥】本題主要考查正弦定理,余弦定理的應(yīng)用,基本不等式的應(yīng)用,屬于基礎(chǔ)題.20、(Ⅰ);(Ⅱ).【解題分析】

(1)本題首先可根據(jù)點在函數(shù)的圖像上得出,然后根據(jù)與的關(guān)系即可求得數(shù)列的通項公式;(2)首先可根據(jù)數(shù)列的通項公式得出,然后根據(jù)裂項相消法求和即可得出結(jié)果?!绢}目詳解】(1)由題意知.當(dāng)時,;當(dāng)時,,適合上式.所以.(2).則?!绢}目點撥】本題考查根據(jù)數(shù)列的前項和為求數(shù)列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論