數(shù)字圖像處理chapter3_第1頁
數(shù)字圖像處理chapter3_第2頁
數(shù)字圖像處理chapter3_第3頁
數(shù)字圖像處理chapter3_第4頁
數(shù)字圖像處理chapter3_第5頁
已閱讀5頁,還剩96頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

ImageEnhancementintheSpatialImageEnhancementintheSpatialImageenhancementisakindprocessingofimagequalitytomakeoriginalimagesuitsomepredefinedsense;ImageenhancementissubjectiveImageenhancementisoneofthemostandvisuallyappealingareasofimageImageEnhancementapproachesfallintobroadcategories:SpatialdomainmethodsandFrequencydomainmethods;SomeBasicGrayLevelTransformationsHistogramProcessingEnhancementUsingArithmetic/LogicOperationsBasicsofSpatialFilteringSmoothingSpatialFiltersSharpeningSpatialCombiningSpatialEnhancementSomeBasicGrayLevelTransformationsHistogramProcessingEnhancementUsingArithmetic/LogicOperationsBasicsofSpatialFilteringSmoothingSpatialFiltersSharpeningSpatialCombiningSpatialEnhancementImageenhancementinspatialdomainistheImageenhancementinspatialdomainistheprocedurethatoperatesdirectlyonimagepixels.Spatialdomainprocesseswillbedenotedbytheexpression??,=??,where??(??,??)istheinputimage,??(??,??)istheprocessedimage,and??isoperatoron??,definedoversomeneighborhoodof(??,??)Defininganeighborhoodofpixel(??,y點(??,??)的鄰域主要是指以(??,??)為xDefininganeighborhoodofpixel(??,y點(??,??)的鄰域主要是指以(??,??)為xToperationofsingleTheneighborhoodisofsizesInputOutput??=當灰度變化的??操作針對單個像素時,輸出圖像的??????,??的值,??操作變成了灰度級變換函數(shù)(強度映射)ToperationofsingleTheneighborhoodisofsizesInputOutput??=當灰度變化的??操作針對單個像素時,輸出圖像的??????,??的值,??操作變成了灰度級變換函數(shù)(強度映射)ToperationofconvolutionTheneighborhoodisofsize??×??(e.g.3×ConvolutionInputOutput??(??,??)=??1??1+??2??2+??3??3+??4??4+??5??5+??6??6??7??7+??8??8+ToperationofconvolutionTheneighborhoodisofsize??×??(e.g.3×ConvolutionInputOutput??(??,??)=??1??1+??2??2+??3??3+??4??4+??5??5+??6??6??7??7+??8??8+SomeBasicGrayLevelTransformationsHistogramProcessingEnhancementUsingArithmetic/LogicOperationsBasicsofSpatialFilteringSmoothingSpatialFiltersSharpeningSpatialCombiningSpatialEnhancementSomeBasicGrayLevelImage灰度級范圍為[0,?1]獲得,即??=??10OutputInput??=??(??)=???1?SomeBasicGrayLevelImage灰度級范圍為[0,?1]獲得,即??=??10OutputInput??=??(??)=???1?SomeBasicGrayLevelImageSomeBasicGrayLevelImageOutputInput??=??(??)=255?SomeBasicGrayLevelSomeBasicGrayLevelLogThegeneralformofthelogtransformation??=????????(1+Wherecisaconstant,anditisassumedthat??≥SomeBasicGrayLevelSomeBasicGrayLevelLogSomeBasicGrayLevelSomeBasicGrayLevelLogtransformationsInputOutputSomeBasicGrayLevelSomeBasicGrayLevelPower-lawThebasicformofPower–law??=??????,wherecandγarepositiveSomeBasicGrayLevelPower-lawSomeBasicGrayLevelPower-lawtransformation—GammaSomeBasicGrayLevelSomeBasicGrayLevelAdditionalremarksofgammaGammacorrectionisimportantifdisplayinganimageaccuratelyonacomputerscreenisofconcern.Imagesthatarenotcorrectedproperlycanlookeitherbleachedout,or,whatismorelikely,toodark.Gammacorrectionchangesnotonlythebrightness,butalsotheratiosofredtogreentoblue.SomeBasicGrayLevelSomeBasicGrayLevelSomeBasicGrayLevelSomeBasicGrayLevelSomeBasicGrayLevelContrastPiecewise-lineartransformationSomeBasicGrayLevelContrastPiecewise-lineartransformation點(??1,??1)和(??2,??2)的位置決定如果??2=??1,=如果=0,??2=???=??2,TypicaltransformationusedforcontrastSomeBasicGrayLevelSomeBasicGrayLevelContraststretchingSomeBasicGrayLevelSomeBasicGrayLevelSomeBasicGrayLevelSomeBasicGrayLevelPiecewise-lineartransformationfunction—Gray-levelSomeBasicGrayLevelSomeBasicGrayLeveltransformationfunction—Bit-Piecewise-SomeBasicGrayLevelSomeBasicGrayLevelBit-planeslicingSomeBasicGrayLevelSomeBasicGrayLevelBit-planeslicingSomebasicGrayLevelTransformationsHistogramProcessingEnhancementUsingArithmetic/LogicOperationsBasicsofSpatialFilteringSmoothingSpatialFiltersSharpeningSpatialCombiningSpatialEnhancementHistogramWhatisTheHistogramofadigitalHistogramWhatisTheHistogramofadigitalimagewithgrayslevelsintherange[0,???1]isadiscretefunction?(????)=where????isthe??thgrayleveland????isthenumberpixelsintheimagehavinggraylevel????.Normalizedhistogramisgivenby=;Actually,thehistogramofadigitalimagereflectsprobabilityofoccurrenceofgraylevel????HistogramHistogramsof4HistogramHistogramsof4typesofHistogramHistogramHistogramHistogramHistogramHistogram?HistogramHistogramHistogramHistogramConsiderforamomentcontinuousfunctions,Letthevariable??representthegraylevelsoftheimagetobeenhanced.ThenHistogramHistogramConsiderforamomentcontinuousfunctions,Letthevariable??representthegraylevelsoftheimagetobeenhanced.Thenhistogramequalizationcanberealizedbythefollowingfunction:??=0≤??≤???where??isthegraylevelHistogramAssumefunctionsatisfiesthefollowingHistogramAssumefunctionsatisfiesthefollowing??(??)issinglevaluedandmonotonicallyincreasingtheinterval0≤??≤??? ≤???1,0≤??≤???0≤HistogramAssumefunctionsatisfiesthefollowingHistogramAssumefunctionsatisfiesthefollowing??(??)issinglevaluedandmonotonicallyincreasingintheinterval0≤??≤???1(保證輸出灰度不改變原始相對亮度關(guān)系 ≤???1,0≤??≤???0≤(保證輸出灰度范圍與輸入灰度范圍相同HistogramThe??=HistogramThe??=0≤??≤HistogramLet’sseethefollowingtransformation??==(??HistogramLet’sseethefollowingtransformation??==(???0Where??isadummyvariableofintegration.transformationfunctionsatisfiestheprevioustwo??(??)issinglevaluedandmonotonicallyintheinterval0≤??≤??? ≤???1,0≤??≤???0≤function(CDF)HistogramPrincipleofhistogram denotetheprobabilityHistogramPrincipleofhistogram denotetheprobabilityLet andfunction(PDF)of??and??,thePDFvariablescanbeobtainedusingthesimple=HistogramLet??and??HistogramLet??and??arerandomvariableininterval[0,???Assumethat????(??)and????(??)respectivelyprobabilitydensityfunctionof??and??.HistogramHistogramWewanttoanalyzetheprobabilityfunctionof??b????????????we.=??=HistogramWewanttoanalyzetheprobabilityfunctionof??b????????????we.=??==(???0=(???1)0??==(???Histogram1(???1)????1=??=??Histogram1(???1)????1=??=??=0≤??≤???HistogramFordiscrete,)??=0,1,2,…,???AplotofHistogramFordiscrete,)??=0,1,2,…,???Aplotof versus????iscommonlyreferredtoasThediscretetransformation???=???=????=??=0,1,2,…,??? ishistogramequalizationHistogram例:假設(shè)一幅×8個灰度級,各個灰度級出現(xiàn)的概率如下表所示,請對該圖像的值方圖進行均衡化處理。==???0====Histogram例:假設(shè)一幅×8個灰度級,各個灰度級出現(xiàn)的概率如下表所示,請對該圖像的值方圖進行均衡化處理。==???0=========+7????HistogramHistogram=1.33→=4.55→=6.23→=6.86→=3.08→=5.67→=6.65→=7.00→HistogramHistogramHistogramHistogramHistogramsuitableSpecialexplanation:HistogramHistogramsuitableSpecialexplanation:Histogramprocessingisallimageenhancement.InputimageandoutputimageandHistogramHistogramMatchingHistogramHistogramMatchingThemethodusedtogenerateaprocessedimagethathasaspecifiedhistogramiscalledhistogrammatchingorhistogramspecification.HistogramHistogramMatchingLet????(??)denotetheprobabilitydensityfunctionofthegivenHistogramHistogramMatchingLet????(??)denotetheprobabilitydensityfunctionofthegiveninputimageand????(??)denotethespecifiedprobabilitydensityfunctionthatwewishtheoutputimagetohave.BasicProcedureofhistogrammatching(continuous(1)Equalizetheoriginalimage??=??=(?????0(2)Thedesiredimagehistogram??=(?????????????=0(3)Obtaintheinversetransformation??==(4)ObtaintheoutputHistogramFordiscrete(1)Equalizetheoriginalimage??,??=0,1,2,…,??? =??=???HistogramFordiscrete(1)Equalizetheoriginalimage??,??=0,1,2,…,??? =??=???=(2)Thedesiredimagehistogram???=???=????=??????theinversetransformation==??(4)ObtaintheoutputimagebytheinversetransformationHistogramHistogramHistogramStep1:obtainthescaledhistogram-equalizedvaluesusingthefollowingequation:??,??=0,1,2,…,??? =??HistogramStep1:obtainthescaledhistogram-equalizedvaluesusingthefollowingequation:??,??=0,1,2,…,??? =??=???=For7790=1.33→ =0==00Then,we??0=1,??2=5,??4=6,??6=??1=3,??3=6,??5=7,??7=HistogramStep2:computeallthevaluesofthetransformation???=???==??==0HistogramStep2:computeallthevaluesofthetransformation???=???==??==0 0 1==+??(??1)]=======HistogramConvertthesefractionalvaluesto==HistogramConvertthesefractionalvaluesto========HistogramStep3:findtheHistogramStep3:findthesmallestvalueof????sothatthevalue??(????)istheclosetHistogramStep4:mapeverypixelinthehistogramequalizedimageintoacorrespondingHistogramStep4:mapeverypixelinthehistogramequalizedimageintoacorrespondingpixelinthenewlycreatedhistogram-specifiedimage.HistogramHistogramHistogramCompareHistogramEqualizationHistogramCompareHistogramEqualizationandHistogramHistogramHistogramComparingHistogramEqualizationandHistogramComparingHistogramEqualizationandHistogramHistogramHistogramLocalLocalHistogramLocalLocalHistogramHistogramUseofHistogramStatisticsforimageHistogramUseofHistogramStatisticsforimageThemeanofan???11??????(????)=??(??,????=0Where????isthegrayleveland?? istheofgraylevel????HistogramUseofHistogramStatisticsforimageThevarianceofan???1HistogramUseofHistogramStatisticsforimageThevarianceofan???112=?????2??(??)????,?Where????isthegraylevelandofgraylevel???? istheHistogramUseofHistogramStatisticsforimagesubThemeanHistogramUseofHistogramStatisticsforimagesubThemean=??????(??)Thevarianceofsub22=?????(??Where??????denotesthesubimagecentered??,.HistogramEnhance??,??1????HistogramEnhance??,??1????≤????????≤≤??0??????(??,??)????,SomebasicGrayLevelTransformationsHistogramProcessingEnhancementUsingArithmetic/LogicOperationsBasicsofSpatialFilteringSmoothingSpatialFiltersSharpeningSpatialCombiningSpatialEnhancementEnhancementUsingArithmeticoperationsEnhancementUsingArithmeticoperationsThesubsectiondiscussadditionandLogic:AND,ORExceptfortheLogicoperationNot,Otherarithmetic/logicoperationsinvolvingimagesareperformedonapixel-by-pixelbasisbetweenormoreSomebasicGrayLevelTransformationsHistogramProcessingEnhancementUsingArithmetic/LogicOperationsBasicsofSpatialFilteringSmoothingSpatialFiltersSharpeningSpatialCombiningSpatialEnhancementBasicsSpatialSpatialFilteringBasicsSpatialSpatialFilteringareperformeddirectlyonthepixelsofanimage.BasicsSpatialofspatialBasicsSpatialofspatialSpatialfiltercanalsobecalledmask,kernel,templateandwindow.BasicsSpatialAspatialfilterconsistsofaneighborhood(typicallyasmallapredefinedoperationthatisperformedontheimagepixelsencompassedbytheneighborhood.InputOutputBasicsSpatialAspatialfilterconsistsofaneighborhood(typicallyasmallapredefinedoperationthatisperformedontheimagepixelsencompassedbytheneighborhood.InputOutputBasicsSpatialTwokindsofspatialBasicsSpatialTwokindsofspatialLinearspatialTheoperationperformedontheimagepixelsislinear,thenthefilteriscalledalinearspatialfilter.NonlinearspatialTheoperationperformedontheimagepixelsisnonlinear,thenthefilteriscalledalinearspatialBasicsSpatial1.LinearSpatialTheresponseofthefilterisgivenbyasumofproductsofthefiltercoefficientsandthecorrespondingimagepixelsintheareaspannedbythefiltermask.ThefilterInputOutput??(??,??)=???1,?1?????1,???+???1,0?????1,+??0,0????,+?+??1,0????+1,+??1,1????+1,??+??(?1,??(0,??(1,BasicsSpatial1.LinearSpatialTheresponseofthefilterisgivenbyasumofproductsofthefiltercoefficientsandthecorrespondingimagepixelsintheareaspannedbythefiltermask.ThefilterInputOutput??(??,??)=???1,?1?????1,???+???1,0?????1,+??0,0????,+?+??1,0????+1,+??1,1????+1,??+??(?1,??(0,??(1,BasicsSpatialForamasksizeofBasicsSpatialForamasksizeof??×??,weassumethat??=2??1and??=2??+1.Ingeneral,linearspatialfilteringofanimageofsize??×??withafilterofsize??×??isgivenbytheexpression:??(??,??)??,??(??+??,??+??=???BasicsSpatial2.NonlinearSpatialBasicsSpatial2.NonlinearSpatialTheresponseofnonlinearspatialfilteringcan'tbeobtainedbytheformulaoflinespatialfiltering,forexamplemedianfilter.(Fordetailofmedianrefertothe)SomebasicGrayLevelTransformationsHistogramProcessingEnhancementUsingArithmetic/LogicOperationsBasicsofSpatialFilteringSmoothingSpatialFiltersSharpeningSpatialCombiningSpatialEnhancementBasicsSpatialThekeyBasicsSpatialThekeyusefulnessofsoothspatialfilternoisereduction.isblurringBasicsSpatialSmoothingLinearTheBasicsSpatialSmoothingLinearTheresponseofthefilerissimplytheaverageofpixelscontainedintheneighborhoodoffilter3×3Weighting3×3boxSmoothDifferentfilersize,SmoothDifferentfilersize,DifferenteffectofsmoothingSmoothAnapplicationofSmoothAnapplicationofsmoothinglinearSmoothOrders-Statistics(Nonlinear)SmoothOrders-Statistics(Nonlinear)Orders-statisticsfiltersisakindfilter.Itsoutputisbasedonorderingthepixelscontainedintheimageareaencompassedbythefilter,andthenreplacingthevalueofthecenterpixelwiththevaluedeterminedbytherankingThebest-knownexampleisthemedianSmoothSpatialMedianfilterreplacesthevalueofapixelbythemedianoftheintensityvaluesinSmoothSpatialMedianfilterreplacesthevalueofapixelbythemedianoftheintensityvaluesintheneighborhoodofthatpixel.ForMedianoftheSmoothApplicationexampleSmoothApplicationexampleMedianfilterareparticularlyeffectiveinthepresenceofimpulsenoise,alsocalledsalt-and-peppernoisebecauseofitsappearanceaswhiteandblackdotssuperimposedonanimage.SomebasicGrayLevelTransformationsHistogramProcessingEnhancementUsingArithmetic/LogicOperationsBasicsofSpatialFilteringSmoothingSpatialFiltersSharpeningSpatialCombiningSpatialEnhancementSharpeningSpatialTheprincipalobjectiveofSharpeningSpatialTheprincipalobjectiveofsharpeningistohighlightfinedetailinanimageorenhanceblurreddetail.SpatialismostlyaccomplishedspatialInputOutputSharpeningSpatialAbasicdefinitionofthefirst-orderderivativeSharpeningSpatialAbasicdefinitionofthefirst-orderderivativeofaone-dimensionalfunction??(??)isthedifference=????+?Similarly,wedefineasecond-orderderivativeasthe=????++??????SharpeningSpatialExplanationofSharpeningSpatialExplanationofcomparingandsecond-orderSharpeningSpatialPropertiesSharpeningSpatialPropertiesoffirstmustbezeroinareasofconstantmustbenonzeroattheonsetofanintensitysteporrampmustbenonzeroalongSharpeningSpatialPropertiesSharpeningSpatialPropertiesofsecondmustbezeroinareasofconstantmustbenonzeroattheonsetandendofanintensitysteporrampmustbezeroalongrampsofconstantSharpeningSpatialConclusionsofcomparingfirst-SharpeningSpatialConclusionsofcomparingfirst-andsecond-orderFirst-orderderivativesgenerallyproducethickeredgesinanimage;Second-orderderivativeshaveastrongerresponsefinedetail,suchasthinlinesandisolatedpoints;First-orderderivativesgenerallyhaveastrongerresponsetoagray-levelstep.Second-orderderivativesproduceadoubleresponseatstepchangesingraylevel.Forsimilarchangesingray-levelvaluesinanimage,responseofsecond-orderderivativesisstrongertoalinethantoastep,andtoapointthantoaline.SharpeningSpatialUseofsecondderivativesforenhancement–TheTheLaplacianofafunction??(??,??)oftwoSharpeningSpatialUseofsecondderivativesforenhancement–TheTheLaplacianofafunction??(??,??)oftwodefined??2??+Fordiscrete??2??+=????+1,?2????,+?????1,+[????,??+?2????, +??(??,???=????+1,+?????1,+????,??++????,????4??(??,SharpeningSpatialLap

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論