南寧二中、柳州高中2024屆高二數(shù)學第二學期期末聯(lián)考模擬試題含解析_第1頁
南寧二中、柳州高中2024屆高二數(shù)學第二學期期末聯(lián)考模擬試題含解析_第2頁
南寧二中、柳州高中2024屆高二數(shù)學第二學期期末聯(lián)考模擬試題含解析_第3頁
南寧二中、柳州高中2024屆高二數(shù)學第二學期期末聯(lián)考模擬試題含解析_第4頁
南寧二中、柳州高中2024屆高二數(shù)學第二學期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

南寧二中、柳州高中2024屆高二數(shù)學第二學期期末聯(lián)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知i為虛數(shù)單位,復數(shù)z滿足(1-i)·z=2i,是復數(shù)z的共軛復數(shù),則下列關于復數(shù)z的說法正確的是()A.z=1-i B.C. D.復數(shù)z在復平面內(nèi)表示的點在第四象限2.下列說法正確的是()A.命題“若,則”的否命題為“若,則”B.命題“,”的否定是“,”C.樣本的相關系數(shù)r,越接近于1,線性相關程度越小D.命題“若,則”的逆否命題為真命題3.從裝有4粒大小、形狀相同,顏色不同的玻璃球的瓶中,隨意一次倒出若干粒玻璃球(至少一粒),則倒出奇數(shù)粒玻璃球的概率比倒出偶數(shù)粒玻璃球的概率()A.小 B.大 C.相等 D.大小不能確定4.復數(shù)(i為虛數(shù)單位)的共軛復數(shù)是A.1+i B.1?i C.?1+i D.?1?i5.在直角坐標系中,一個質(zhì)點從出發(fā)沿圖中路線依次經(jīng)過,,,,按此規(guī)律一直運動下去,則()A.1006 B.1007 C.1008 D.10096.已知全集,集合,,那么集合()A. B. C. D.7.某次運動會中,主委會將甲、乙、丙、丁四名志愿者安排到三個不同比賽項目中擔任服務工作,每個項目至少1人,若甲、乙兩人不能到同一個項目,則不同的安排方式有()A.24種 B.30種 C.36種 D.72種8.在數(shù)學興趣課堂上,老師出了一道數(shù)學思考題,某小組的三人先獨立思考完成,然后一起討論.甲說:“我做錯了!”乙對甲說:“你做對了!”丙說:“我也做錯了!”老師看了他們?nèi)说拇鸢负笳f:“你們?nèi)酥杏星抑挥幸蝗俗鰧α?,有且只有一人說對了.”請問下列說法正確的是()A.乙做對了 B.甲說對了 C.乙說對了 D.甲做對了9.已知在R上是奇函數(shù),且A.-2 B.2 C.-98 D.9810.下列函數(shù)中,值域為的偶函數(shù)是()A. B. C. D.11.為了弘揚我國優(yōu)秀傳統(tǒng)文化,某中學廣播站在春節(jié)、元宵節(jié)、清明節(jié)、端午節(jié)、中秋節(jié)五個中國傳統(tǒng)節(jié)日中,隨機選取兩個節(jié)日來講解其文化內(nèi)涵,那么春節(jié)和端午節(jié)恰有一個被選中的概率是()A. B. C. D.12.定義在上的函數(shù)滿足下列兩個條件:(1)對任意的恒有成立;(2)當時,;記函數(shù),若函數(shù)恰有兩個零點,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線的參數(shù)方程為:(為參數(shù)),橢圓的參數(shù)方程為:(為參數(shù)),若它們總有公共點,則取值范圍是___________.14.已知圓C1:,圓C2:,M,N分別是圓C1,C2上的動點,P為軸上的動點,則的最小值_____.15.已知集合,且,則實數(shù)的取值范圍是__________.16.如圖,從氣球上測得正前方的河流的兩岸,的俯角分別為和,如果這時氣球的高是30米,則河流的寬度為______米.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某小組10名學生參加的一次數(shù)學競賽的成績分別為:92、77、75、90、63、84、99、60、79、85,求總體平均數(shù)μ、中位數(shù)m、方差σ2和標準差σ;(列式并計算,結果精確到0.1)18.(12分)一個盒子裝有六張卡片,上面分別寫著如下六個函數(shù):,,,(I)從中任意拿取張卡片,若其中有一張卡片上寫著的函數(shù)為奇函數(shù),在此條件下,求兩張卡片上寫著的函數(shù)相加得到的新函數(shù)為奇函數(shù)的概率;(II)現(xiàn)從盒子中逐一抽取卡片,且每次取出后均不放回,若取到一張寫有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進行,求抽取次數(shù)的分布列和數(shù)學期望.19.(12分)在考察黃煙經(jīng)過藥物處理和發(fā)生青花病的關系時,得到如下數(shù)據(jù):在試驗的470株黃煙中,經(jīng)過藥物處理的黃煙有25株發(fā)生青花病,60株沒有發(fā)生青花??;未經(jīng)過藥物處理的有185株發(fā)生青花病,200株沒有發(fā)生青花?。囃茢嗨幬锾幚砀l(fā)生青花病是否有關系.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)在直角坐標系中,直線的參數(shù)方程為,(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于不同兩點.(1)求直線和曲線的普通方程;(2)若點,求.21.(12分)某工廠共有男女員工500人,現(xiàn)從中抽取100位員工對他們每月完成合格產(chǎn)品的件數(shù)統(tǒng)計如下:每月完成合格產(chǎn)品的件數(shù)(單位:百件)頻數(shù)10453564男員工人數(shù)7231811(1)其中每月完成合格產(chǎn)品的件數(shù)不少于3200件的員工被評為“生產(chǎn)能手”.由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有95%的把握認為“生產(chǎn)能手”與性別有關?非“生產(chǎn)能手”“生產(chǎn)能手”合計男員工女員工合計(2)為提高員工勞動的積極性,工廠實行累進計件工資制:規(guī)定每月完成合格產(chǎn)品的件數(shù)在定額2600件以內(nèi)的,計件單價為1元;超出件的部分,累進計件單價為1.2元;超出件的部分,累進計件單價為1.3元;超出400件以上的部分,累進計件單價為1.4元.將這4段中各段的頻率視為相應的概率,在該廠男員工中選取1人,女員工中隨機選取2人進行工資調(diào)查,設實得計件工資(實得計件工資=定額計件工資+超定額計件工資)不少于3100元的人數(shù)為,求的分布列和數(shù)學期望.附:,.22.(10分)某大學學生會為了調(diào)查了解該校大學生參與校健身房運動的情況,隨機選取了100位大學生進行調(diào)查,調(diào)查結果統(tǒng)計如下:參與不參與總計男大學生30女大學生50總計45100(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;(2)能否在犯錯誤的概率不超過0.005的前提下認為參與校健身房運動與性別有關?請說明理由.附:,其中.0.0500.0250.0100.0050.0013.8415.0246.6357.87910.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】

把已知等式變形,利用復數(shù)代數(shù)形式的乘除運算化簡求出z,然后逐一核對四個選項得答案.【題目詳解】復數(shù)在復平面內(nèi)表示的點在第二象限,故選C.【題目點撥】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的基本概念,是基礎題.2、D【解題分析】

利用四種命題之間的變換可判斷A;根據(jù)全稱命題的否定變法可判斷B;利用相關系數(shù)與相關性的關系可判斷C;利用原命題與逆否命題真假關系可判斷D.【題目詳解】對于A,命題“若,則”的否命題為“若,則”,故A錯誤;對于B,命題“,”的否定是“,”,故B錯誤;對于C,樣本的相關系數(shù)r,越接近于1,線性相關程度越大,故C錯誤;對于D,命題“若,則”為真命題,故逆否命題也為真命題,故D正確;故選:D【題目點撥】本題考查了判斷命題的真假、全稱命題的否定、四種命題的轉化以及原命題與逆否命題真假關系、相關系數(shù)與相關性的關系,屬于基礎題.3、B【解題分析】試題分析:四種不同的玻璃球,可設為,隨意一次倒出一粒的情況有4種,倒出二粒的情況有6種,倒出3粒的情況有4種,倒出4粒的情況有1種,那么倒出奇數(shù)粒的有8種,倒出偶數(shù)粒的情況有7種,故倒出奇數(shù)粒玻璃球的概率比倒出偶數(shù)粒玻璃球的概率大.考點:古典概型.4、B【解題分析】分析:化簡已知復數(shù)z,由共軛復數(shù)的定義可得.詳解:化簡可得z=∴z的共軛復數(shù)為1﹣i.故選B.點睛:本題考查復數(shù)的代數(shù)形式的運算,涉及共軛復數(shù),屬基礎題.5、D【解題分析】

分析:由題意得,即,觀察前八項,得到數(shù)列的規(guī)律,求出即可.詳解:由直角坐標系可知,,即,由此可知,數(shù)列中偶數(shù)項是從1開始逐漸遞增的,且都等于所在的項數(shù)除以2,則,每四個數(shù)中有一個負數(shù),且為每組的第三個數(shù),每組的第一個數(shù)為其組數(shù),每組的第一個數(shù)和第三個數(shù)是互為相反數(shù),因為,則,,故選D.點睛:本題考查了歸納推理的問題,關鍵是找到規(guī)律,屬于難題.歸納推理的一般步驟:一、通過觀察個別情況發(fā)現(xiàn)某些相同的性質(zhì).二、從已知的相同性質(zhì)中推出一個明確表述的一般性命題(猜想).常見的歸納推理分為數(shù)的歸納和形的歸納兩類:(1)數(shù)的歸納包括數(shù)的歸納和式子的歸納,解決此類問題時,需要細心觀察,尋求相鄰項及項與序號之間的關系,同時還要聯(lián)系相關的知識,如等差數(shù)列、等比數(shù)列等;(2)形的歸納主要包括圖形數(shù)目的歸納和圖形變化規(guī)律的歸納.6、C【解題分析】

先求得集合的補集,然后求其與集合的交集.【題目詳解】依題意,故,故選C.【題目點撥】本小題主要考查集合補集的運算,考查集合交集的運算,屬于基礎題.7、B【解題分析】

首先對甲、乙、丙、丁進行分組,減去甲、乙兩人在同一個項目一種情況,然后進行3個地方的全排列即可得到答案.【題目詳解】先將甲、乙、丙、丁分成三組(每組至少一人)人數(shù)分配是1,1,2共有種情況,又甲、乙兩人不能到同一個項目,故只有5種分組情況,然后分配到三個不同地方,所以不同的安排方式有種,故答案選B.【題目點撥】本題主要考查排列組合的相關計算,意在考查學生的分析能力,邏輯推理能力和計算能力,難度不大.8、B【解題分析】

分三種情況討論:甲說法對、乙說法對、丙說法對,通過題意進行推理,可得出正確選項.【題目詳解】分以下三種情況討論:①甲的說法正確,則甲做錯了,乙的說法錯誤,則甲做錯了,丙的說法錯誤,則丙做對了,那么乙做錯了,合乎題意;②乙的說法正確,則甲的說法錯誤,則甲做對了,丙的說法錯誤,則丙做對了,矛盾;③丙的說法正確,則丙做錯了,甲的說法錯誤,則甲做對了,乙的說法錯誤,則甲做錯了,自相矛盾.故選:B.【題目點撥】本題考查簡單的合情推理,解題時可以采用分類討論法進行假設,考查推理能力,屬于中等題.9、A【解題分析】∵f(x+4)=f(x),∴f(x)是以4為周期的周期函數(shù),∴f(2019)=f(504×4+3)=f(3)=f(-1).又f(x)為奇函數(shù),∴f(-1)=-f(1)=-2×12=-2,即f(2019)=-2.故選A10、C【解題分析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點:1、函數(shù)的奇偶性;2、函數(shù)的值域.11、C【解題分析】分析:先根據(jù)組合數(shù)確定隨機選取兩個節(jié)日總事件數(shù),再求春節(jié)和端午節(jié)恰有一個被選中的事件數(shù),最后根據(jù)古典概型概率公式求結果.詳解:因為五個中國傳統(tǒng)節(jié)日中,隨機選取兩個節(jié)日共有種,春節(jié)和端午節(jié)恰有一個被選中的選法有,所以所求概率為選C.點睛:古典概型中基本事件數(shù)的探求方法(1)列舉法.(2)樹狀圖法:適合于較為復雜的問題中的基本事件的探求.對于基本事件有“有序”與“無序”區(qū)別的題目,常采用樹狀圖法.(3)列表法:適用于多元素基本事件的求解問題,通過列表把復雜的題目簡單化、抽象的題目具體化.(4)排列組合法:適用于限制條件較多且元素數(shù)目較多的題目.12、C【解題分析】

根據(jù)題中的條件得到函數(shù)的解析式為:f(x)=﹣x+2b,x∈(b,2b],又因為f(x)=k(x﹣1)的函數(shù)圖象是過定點(1,0)的直線,再結合函數(shù)的圖象根據(jù)題意求出參數(shù)的范圍即可【題目詳解】因為對任意的x∈(1,+∞)恒有f(2x)=2f(x)成立,且當x∈(1,2]時,f(x)=2﹣x;f(x)=2(2)=4﹣x,x∈(2,4],f(x)=4(2)=8﹣x,x∈(4,8],…所以f(x)=﹣x+2b,x∈(b,2b].(b取1,2,4…)由題意得f(x)=k(x﹣1)的函數(shù)圖象是過定點(1,0)的直線,如圖所示只需過(1,0)的直線與線段AB相交即可(可以與B點重合但不能與A點重合)kPA2,kPB,所以可得k的范圍為故選:C.【題目點撥】解決此類問題的關鍵是熟悉求函數(shù)解析式的方法以及函數(shù)的圖象與函數(shù)的性質(zhì),數(shù)形結合思想是高中數(shù)學的一個重要數(shù)學思想,是解決數(shù)學問題的必備的解題工具.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

把參數(shù)方程化為普通方程,若直線與橢圓有公共點,對判別式進行計算即可.【題目詳解】直線l的參數(shù)方程為(t為參數(shù)),消去t化為普通方程為ax﹣y﹣1=0,且,橢圓C的參數(shù)方程為:(θ為參數(shù)),消去參數(shù)化為.聯(lián)立直線與橢圓,消y整理得,若它們總有公共點,則,解得且,故答案為.【題目點撥】本題考查參數(shù)方程與普通方程之間的互化,考查直線與橢圓的位置關系,考查計算能力,屬于基礎題.14、【解題分析】

求出圓關于軸對稱圓的圓心坐標,以及半徑,然后求解圓與圓的圓心距減去兩個圓的半徑和,即可得到的最小值.【題目詳解】如圖所示,圓關于軸對稱圓的圓心坐標,以及半徑,圓的圓心坐標為,半徑為,所以的最小值為圓與圓的圓心距減去兩個圓的半徑和,即.【題目點撥】本題主要考查了圓的對稱圓的方程的求法,以及兩圓的位置關系的應用,其中解答中把的最小值轉化為圓與圓的圓心距減去兩個圓的半徑和是解答的關鍵,著重考查了轉化思想,以及推理與運算能力,屬于中檔試題.15、【解題分析】分析:求出,由,列出不等式組能求出結果.詳解:根據(jù)題意可得,,由可得即答案為.點睛:本題考查實數(shù)的取值范圍的求法,是基礎題,解題時要認真審題,注意不等式性質(zhì)的合理運用.16、【解題分析】

由題意畫出圖形,利用特殊角的三角函數(shù),可得答案.【題目詳解】解:由題意可知,,,,.故答案為.【題目點撥】本題給出實際應用問題,著重考查了三角函數(shù)的定義,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、,,,【解題分析】

根據(jù)平均數(shù)、方差、標準差的計算公式求得結果,根據(jù)中位數(shù)的定義可排列順序后求得.【題目詳解】平均數(shù)名學生按成績自低到高排列為:則中位數(shù)方差標準差【題目點撥】本題考查已知數(shù)據(jù)求解平均數(shù)、中位數(shù)、方差和標準差的問題,考查運算求解能力,屬于基礎題.18、(1)(2)數(shù)學期望為.【解題分析】

(Ⅰ)所有的基本事件包括兩類:一類為兩張卡片上寫的函數(shù)均為奇函數(shù);另一類為兩張卡片上寫的函數(shù)為一個是奇函數(shù),一個為偶函數(shù),先求出基本事件總數(shù)為,滿足條件的基本事件為兩張卡片上寫的函數(shù)均為奇函數(shù),再求出滿足條件的基本事件個數(shù)為,由此能求出結果.(Ⅱ)ξ可取1,2,3,1.分別求出對應的概率,由此能求出ξ的分布列和數(shù)學期望.【題目詳解】解:(Ⅰ)為奇函數(shù);為偶函數(shù);為偶函數(shù);為奇函數(shù);為偶函數(shù);為奇函數(shù),所有的基本事件包括兩類:一類為兩張卡片上寫的函數(shù)均為奇函數(shù);另一類為兩張卡片上寫的函數(shù)為一個是奇函數(shù),一個為偶函數(shù);基本事件總數(shù)為,滿足條件的基本事件為兩張卡片上寫的函數(shù)均為奇函數(shù),滿足條件的基本事件個數(shù)為,故所求概率.(Ⅱ)可?。?;故的分布列為.的數(shù)學期望為.【題目點撥】本題主要考查離散型隨機變量的分布列與數(shù)學期望,屬于中檔題.求解該類問題,首先要正確理解題意,其次要準確無誤的找出隨機變量的所以可能值,計算出相應的概率,寫出隨機變量的分布列,正確運用均值、方差的公式進行計算,也就是要過三關:(1)閱讀理解關;(2)概率計算關;(3)公式應用關.19、在犯錯誤的概率不超過0.005的前提下,認為藥物處理跟發(fā)生青花病是有關系的.【解題分析】

先完成列聯(lián)表,計算的觀測值,對照表格數(shù)據(jù)即可得結論【題目詳解】由已知條件得列聯(lián)表如下:藥物處理未經(jīng)藥物處理合計青花病25185210無青花病60200260合計85385470提出假設:經(jīng)過藥物處理跟發(fā)生青花病無關系.根據(jù)列聯(lián)表中的數(shù)據(jù),可以求得的觀測值.因為當成立時,的概率約為0.005,而此時,所以在犯錯誤的概率不超過0.005的前提下,認為藥物處理跟發(fā)生青花病是有關系的.【題目點撥】本題考查獨立性檢驗,考查計算能力,是基礎題20、(1),(2)【解題分析】

(1)將參數(shù)方程消去即可得到普通方程;根據(jù)極坐標與直角坐標互化原則可得曲線的普通方程;(2)根據(jù)在直線上和直線的傾斜角可得到參數(shù)方程的標準形式,將其代入曲線的普通方程,得到韋達定理的形式;根據(jù)可求得結果.【題目詳解】.(1)直線的普通方程為:,由得:,曲線的普通方程為:,即:.(2)由題意知,點在直線上,且直線傾斜角滿足,,,直線參數(shù)方程標準形式為:(為參數(shù)),將其代入曲線的普通方程得:,則,..【題目點撥】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論