版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省孝感市文昌中學(xué)2024屆數(shù)學(xué)高二下期末統(tǒng)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)函數(shù),若實數(shù)分別是的零點,則()A. B. C. D.2.在一次連環(huán)交通事故中,只有一個人需要負主要責(zé)任,但在警察詢問時,甲說:“主要責(zé)任在乙”;乙說:“丙應(yīng)負主要責(zé)任”;丙說“甲說的對”;丁說:“反正我沒有責(zé)任”.四人中只有一個人說的是真話,則該事故中需要負主要責(zé)任的人是()A.甲 B.乙 C.丙 D.丁3.某技術(shù)學(xué)院安排5個班到3個工廠實習(xí),每個班去一個工廠,每個工廠至少安排一個班,則不同的安排方法共有()A.60種 B.90種 C.150種 D.240種4.已知直線與圓相交所得的弦長為,則圓的半徑()A. B.2 C. D.45.曲線與軸所圍成的封閉圖形的面積為()A.2 B. C. D.46.若函數(shù)在時取得極值,則()A. B. C. D.7.已知定義域為R的函數(shù)滿足:對任意實數(shù)有,且,若,則=()A.2 B.4 C. D.8.下列選項敘述錯誤的是()A.命題“若,則”的逆否命題是“若,則”B.若命題,則C.若為真命題,則,均為真命題D.若命題為真命題,則的取值范圍為9.在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是()A.恰有1件一等品 B.至少有一件一等品C.至多有一件一等品 D.都不是一等品10.復(fù)數(shù)(i為虛數(shù)單位)的共軛復(fù)數(shù)是A.1+i B.1?i C.?1+i D.?1?i11.證明等式時,某學(xué)生的證明過程如下(1)當(dāng)n=1時,,等式成立;(2)假設(shè)時,等式成立,即,則當(dāng)時,,所以當(dāng)時,等式也成立,故原式成立.那么上述證明()A.過程全都正確 B.當(dāng)n=1時驗證不正確C.歸納假設(shè)不正確 D.從到的推理不正確12.一臺機器在一天內(nèi)發(fā)生故障的概率為,若這臺機器一周個工作日不發(fā)生故障,可獲利萬元;發(fā)生次故障獲利為萬元;發(fā)生次或次以上故障要虧損萬元,這臺機器一周個工作日內(nèi)可能獲利的數(shù)學(xué)期望是()萬元.(已知,)A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.阿基米德(公元前287年—公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他最早利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓C的對稱軸為坐標軸,焦點在y軸上,且橢圓C的離心率為,面積為,則橢圓C的標準方程為______.14.設(shè)向量,,若,則實數(shù)的值為________.15.若圓柱的軸截面面積為2,則其側(cè)面積為___;16.設(shè)Sn為等比數(shù)列{an}的前n項和,8a2+a5=0,則=________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的前項和為,,.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)求數(shù)列的前項和.18.(12分)已知正項數(shù)列滿足,數(shù)列的前項和滿足.(1)求數(shù)列,的通項公式;(2)求數(shù)列的前項和.19.(12分)已知.(1)當(dāng)時,求:①展開式中的中間一項;②展開式中常數(shù)項的值;(2)若展開式中各項系數(shù)之和比各二項式系數(shù)之和大,求展開式中含項的系數(shù).20.(12分))已知.(I)試猜想與的大小關(guān)系;(II)證明(I)中你的結(jié)論.21.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(Ⅰ)求曲線的直角坐標方程;(Ⅱ)若直線與曲線相交于不同的兩點,,若是的中點,求直線的斜率.22.(10分)已知函數(shù)fx(1)當(dāng)a=2,求函數(shù)fx(2)若函數(shù)fx
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】由題意得,函數(shù)在各自的定義域上分別為增函數(shù),∵,又實數(shù)分別是的零點∴,∴,故.選A.點睛:解答本題時,先根據(jù)所給的函數(shù)的解析式判斷單調(diào)性,然后利用判斷零點所在的范圍,然后根據(jù)函數(shù)的單調(diào)性求得的取值范圍,其中借助0將與聯(lián)系在一起是關(guān)鍵.2、A【解題分析】
①假定甲說的是真話,則丙說“甲說的對”也是真話,這與四人中只有一個人說的是真話矛盾,所以假設(shè)不成立,故甲說的是假話;②假定乙說的是真話,則丁說“反正我沒有責(zé)任”也為真話,這與四人中只有一個人說的是真話矛盾,所以假設(shè)不成立,故乙說的是假話;③假定丙說的是真話,由①知甲說的也是真話,這與四人中只有一個人說的是真話矛盾,所以假設(shè)不成立,故丙說的是假話;綜上可得,丁說的真話,甲乙丙三人說的均為假話,即乙丙丁沒有責(zé)任,所以甲負主要責(zé)任,故選A.3、C【解題分析】
先將5人分成3組,3,1,1和2,2,1兩種分法,再分配,應(yīng)用排列組合公式列式求解即可.【題目詳解】將5個班分成3組,有兩類方法:(1)3,1,1,有種;(2)2,2,1,有種.所以不同的安排方法共有種.故選C.【題目點撥】本題主要考查了排列組合的實際應(yīng)用問題:分組分配,注意此類問題一般要先分組再分配(即為排列),屬于基礎(chǔ)題.4、B【解題分析】
圓心到直線的距離,根據(jù)點到直線的距離公式計算得到答案.【題目詳解】根據(jù)題意:圓心到直線的距離,故,解得.故選:.【題目點撥】本題考查了根據(jù)弦長求參數(shù),意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.5、D【解題分析】
曲線與軸所圍成圖形的面積,根據(jù)正弦函數(shù)的對稱性,就是求正弦函數(shù)在上的定積分的兩倍.【題目詳解】解:曲線與軸所圍成圖形的面積為:.故選:.【題目點撥】本題考查了定積分,考查了微積分基本定理,求解定積分問題,關(guān)鍵是找出被積函數(shù)的原函數(shù),屬于基礎(chǔ)題.6、D【解題分析】
對函數(shù)求導(dǎo),根據(jù)函數(shù)在時取得極值,得到,即可求出結(jié)果.【題目詳解】因為,所以,又函數(shù)在時取得極值,所以,解得.故選D【題目點撥】本題主要考查導(dǎo)數(shù)的應(yīng)用,根據(jù)函數(shù)的極值求參數(shù)的問題,屬于??碱}型.7、B【解題分析】分析:令,可求得,再令,可求得,再對均賦值,即可求得.詳解:,令,得,又,再令,得,,令,得,故選B.點睛:本題考查利用賦值法求函數(shù)值,正確賦值是解題的關(guān)鍵,屬于中檔題.8、C【解題分析】分析:根據(jù)四種命題的關(guān)系進行判斷A、B,根據(jù)或命題的真值表進行判斷C,由全稱命題為真的條件求D中參數(shù)的值.詳解:命題“若,則”的逆否命題是“若,則”,A正確;若命題,則,B正確;若為真命題,則,只要有一個為真,C錯誤;若命題為真命題,則,,D正確.故選C.點睛:判斷命題真假只能對每一個命題進行判斷,直到選出需要的結(jié)論為止.命題考查四種命題的關(guān)系,考查含邏輯連接詞的命題的真假以及全稱命題為真時求參數(shù)的取值范圍,掌握相應(yīng)的概念是解題基礎(chǔ).9、C【解題分析】
將件一等品編號為,件二等品的編號為,列舉出從中任取件的所有基本事件的總數(shù),分別計算選項的概率,即可得到答案.【題目詳解】將3件一等品編號為1,2,3,2件二等品編號為4,5,從中任取2件有10種取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率為P1=,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率為P2=,其對立事件是“至多有一件一等品”,概率為P3=1-P2=1-=.【題目點撥】本題主要考查了古典概型及其概率的計算問題,其中明確古典概型的基本概念,以及古典的概型及概率的計算公式,合理作出計算是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.10、B【解題分析】分析:化簡已知復(fù)數(shù)z,由共軛復(fù)數(shù)的定義可得.詳解:化簡可得z=∴z的共軛復(fù)數(shù)為1﹣i.故選B.點睛:本題考查復(fù)數(shù)的代數(shù)形式的運算,涉及共軛復(fù)數(shù),屬基礎(chǔ)題.11、A【解題分析】分析:由題意結(jié)合數(shù)學(xué)歸納法的證明方法考查所給的證明過程是否存在錯誤即可.詳解:考查所給的證明過程:當(dāng)時驗證是正確的,歸納假設(shè)是正確的,從到的推理也是正確的,即證明過程中不存在任何的問題.本題選擇A選項.點睛:本題主要考查數(shù)學(xué)歸納法的概念及其應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.12、C【解題分析】
設(shè)獲利為隨機變量,可得出的可能取值有、、,列出隨機變量的分布列,利用數(shù)學(xué)期望公式計算出隨機變量的數(shù)學(xué)期望.【題目詳解】設(shè)獲利為隨機變量,則隨機變量的可能取值有、、,由題意可得,,則.所以,隨機變量的分布列如下表所示:因此,隨機變量的數(shù)學(xué)期望為,故選C.【題目點撥】本題考查隨機變量數(shù)學(xué)期望的計算,解題的關(guān)鍵就是根據(jù)已知條件列出隨機變量的分布列,考查運算求解能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
設(shè)橢圓的方程為,由面積公式以及離心率公式,求出,,即可得到答案?!绢}目詳解】設(shè)橢圓C的方程為,橢圓C的面積為,則,又,解得,.則C的方程為【題目點撥】本題考查橢圓及其標準方程,注意運用離心率公式和,,的關(guān)系,考查學(xué)生基本的運算能力,屬于基礎(chǔ)題。14、或.【解題分析】
由公式結(jié)合空間向量數(shù)量積的坐標運算律得出關(guān)于實數(shù)的方程,解出該方程可得出實數(shù)的值.【題目詳解】,,,,,,則,解得或.故答案為或.【題目點撥】本題考查空間向量數(shù)量積的坐標運算,解題的關(guān)鍵就是利用空間向量數(shù)量積的坐標運算列出方程求解,考查運算求解能力,屬于中等題.15、【解題分析】
根據(jù)題意得圓柱的軸截面為底邊為,高為的矩形,根據(jù)幾何性質(zhì)即可求解?!绢}目詳解】設(shè)圓柱的底面圓半徑為,高為,由題意知,圓柱的軸截面為底邊為,高為的矩形,所以,即。所以側(cè)面積?!绢}目點撥】本題考查圓柱的幾何性質(zhì),表面積的求法,屬基礎(chǔ)題16、-11【解題分析】通過8a2+a5=0,設(shè)公比為q,將該式轉(zhuǎn)化為8a2+a2q3=0,解得q=-2,所以===-11.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解題分析】
(Ⅰ)利用等差數(shù)列公式直接解得答案.(Ⅱ),,利用裂項求和計算得到答案.【題目詳解】(Ⅰ)設(shè)等差數(shù)列的公差為,由,得,解得∴.(Ⅱ),從而,∴的前項和.【題目點撥】本題考查了等差數(shù)列通項公式,裂項求和,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.18、(1),.(2).【解題分析】試題分析:(1)由題意結(jié)合所給的遞推公式可得數(shù)列是以為首項,為公差的等差數(shù)列,則,利用前n項和與通項公式的關(guān)系可得的通項公式為.(2)結(jié)合(1)中求得的通項公式裂項求和可得數(shù)列的前項和.試題解析:(1)因為,所以,,因為,所以,所以,所以是以為首項,為公差的等差數(shù)列,所以,當(dāng)時,,當(dāng)時也滿足,所以.(2)由(1)可知,所以.19、(1)①;②;(2).【解題分析】
(1)當(dāng)時,利用二項式定理,二項展開式的通項公式,可求出特定的項以及常數(shù)項的值;(2)根據(jù)展開式中各項系數(shù)之和比各二項式系數(shù)之和大于求出的值,再利用二項展開式的通項公式,求出展開式中含項的系數(shù).【題目詳解】(1)①當(dāng)時,的展開式共有項,展開式中的中間一項為;②展開式的通項公式為,令,得,所求常數(shù)項的值為;(2)若展開式中各項系數(shù)之和比各二項式系數(shù)之和大于,而展開式中各項系數(shù)之和為,各二項式系數(shù)之和為,則,即,解得.所以,展開式通項為,令,解得,因此,展開式中含項的系數(shù)為.【題目點撥】本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于中檔題.20、(1).(2)證明見解析.【解題分析】分析:(I)由題意,可取,則,,即可猜想;(II)令,則,得到函數(shù)的單調(diào)性,利用單調(diào)性即可證明猜想.詳解:(I)取,則,,則有;再取,則,,則有.故猜想.(II)令,則,當(dāng)時,,即函數(shù)在上單調(diào)遞減,又因為,所以,即,故.點睛:本題主要考查了歸納猜想和利用函數(shù)的單調(diào)性證明不等關(guān)系式,著重考查了分析問題和解答問題的能力,以及推理論證能力.21、(Ⅰ);(Ⅱ).【解題分析】
(Ⅰ)直接利用極化直的公式化簡得到曲線的直角坐標方程;(Ⅱ)將直線的參數(shù)方程代入曲線的直角坐標方程,再根據(jù)求出直線的斜率.【題目詳解】解:(Ⅰ)由,,,得即所求曲線的直角坐標方程為:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年內(nèi)蒙古北方職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)筆試參考題庫含詳細答案解析
- 2026年朔州陶瓷職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)考試備考題庫含詳細答案解析
- 2026年焦作師范高等??茖W(xué)校單招綜合素質(zhì)考試參考題庫含詳細答案解析
- 2026年濰坊科技學(xué)院單招綜合素質(zhì)考試參考題庫含詳細答案解析
- 2026上海市社會主義學(xué)院公開招聘專職教師考試重點試題及答案解析
- 2026年內(nèi)蒙古機電職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)筆試參考題庫含詳細答案解析
- 2026年陜西工業(yè)職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)考試備考試題含詳細答案解析
- 2026一季度浙商銀行上海分行社會招聘考試重點試題及答案解析
- 2026年棗莊職業(yè)學(xué)院單招職業(yè)技能考試模擬試題含詳細答案解析
- 2026年江蘇衛(wèi)生健康職業(yè)學(xué)院單招綜合素質(zhì)筆試模擬試題含詳細答案解析
- 生產(chǎn)現(xiàn)場資產(chǎn)管理制度
- 起重設(shè)備安全使用指導(dǎo)方案
- 江蘇省揚州市區(qū)2025-2026學(xué)年五年級上學(xué)期數(shù)學(xué)期末試題一(有答案)
- 建筑與市政工程地下水控制技術(shù)規(guī)范
- “黨的二十屆四中全會精神”專題題庫及答案
- 2025年天翼云解決方案架構(gòu)師認證考試模擬題庫(200題)答案及解析
- 2026年西藏自治區(qū)政府部門所屬事業(yè)單位人才引進(130人)筆試備考試題及答案解析
- 油氣開采畢業(yè)論文
- 血凝d-二聚體和fdp課件
- 2026-2031中國房地產(chǎn)估價市場分析預(yù)測研究報告
- 天津市和平區(qū)2025年高二化學(xué)第一學(xué)期期末監(jiān)測試題含解析
評論
0/150
提交評論