2022年山東省濟南市高新區(qū)中考數(shù)學二模試題(解析版)_第1頁
2022年山東省濟南市高新區(qū)中考數(shù)學二模試題(解析版)_第2頁
2022年山東省濟南市高新區(qū)中考數(shù)學二模試題(解析版)_第3頁
2022年山東省濟南市高新區(qū)中考數(shù)學二模試題(解析版)_第4頁
2022年山東省濟南市高新區(qū)中考數(shù)學二模試題(解析版)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2022年山東省濟南市高新區(qū)中考數(shù)學二模試題一、選擇題1.﹣2022的絕對值是()A.2022 B. C.﹣2022 D.【答案】A【解析】【分析】直接利用絕對值的定義得出答案.【詳解】解:﹣2022的絕對值是:2022.故選:A.【點睛】此題主要考查了絕對值,正確掌握絕對值的定義是解題關(guān)鍵.2.三個大小一樣的正方體按如圖擺放,它的主視圖是()A. B. C. D.【答案】B【解析】【分析】根據(jù)主視圖是從物體正面看所得到的圖形解答即可.注意所有的看到的棱都應表現(xiàn)在三視圖中.【詳解】解:從正面看是一層兩個正方形,在每個正方形的中間有一條縱向的虛線.故選:B.【點睛】本題考查的是簡單幾何體的三視圖的作圖,主視圖、左視圖、俯視圖是分別從物體正面、側(cè)面和上面看所得到的圖形.3.今年有超過110000名志愿者為北京冬奧會奉獻了熱情服務.將110000用科學記數(shù)法表示應為()A.11×104 B.1.1×105 C.1.1×106 D.0.11×106【答案】B【解析】【分析】科學記數(shù)法的一般形式為a×10n,其中1≤|a|<10,n為整數(shù),且n比原來的整數(shù)位數(shù)少1.【詳解】解:故選:B.【點睛】本題考查科學記數(shù)法的表示方法,科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要確定a的值以及n的值.4.如圖,將三角板的直角頂點放在兩條平行線中的直線AB上,若∠1=22°,則∠2的度數(shù)為()

A.78° B.68°C.22° D.60°【答案】B【解析】【分析】由平行線的性質(zhì),可得∠2=∠3,由∠3=90°-∠1,進而求出∠2的度數(shù).【詳解】解:∵將三角板的直角頂點放在兩條平行線中的直線AB上∴∠2=∠3又∠3+∠1=90°,∠1=22°∴∠3=90°-22°=68°∴∠2=68°故選:B.

【點睛】本題考查平行線的性質(zhì),互余的定義,熟練掌握以上知識是解題的關(guān)鍵.5.第24屆冬季奧林匹克運動會于2022年2月4日至2月20日在中國北京市和張家口市聯(lián)合舉辦,以下是參選的冬奧會會徽設計的部分圖形,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.【答案】C【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的定義逐項分析判斷即可.【詳解】解:A.不是軸對稱圖形,也不是中心對稱圖形,故不符合題意;B.不是軸對稱圖形,也不是中心對稱圖形,故不符合題意;C.是軸對稱圖形,也是中心對稱圖形,故符合題意;D.不是軸對稱圖形,也不是中心對稱圖形,故不符合題意;故選C【點睛】本題考查了軸對稱圖形和中心對稱圖形的識別.識別軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是一個圖形繞某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形能互相重合,那么這個圖形就是中心對稱圖形.6.下列計算正確的是()A.a4?a=a4 B.(a2)3=a6 C.a2+a3=a5 D.a?a=2a【答案】B【解析】【分析】根據(jù)同底數(shù)冪乘法,冪的乘方,合并同類項進行判斷即可.【詳解】解:A.a(chǎn)4?a=a5,不符合題意;B.(a2)3=a6,符合題意;C.a(chǎn)2+a3不是同類項,不能合并,不符合題意;D.a(chǎn)?a=a2,不符合題意;故選:B.【點睛】本題考查同底數(shù)冪乘法,冪的乘方,合并同類項的運算,熟練地掌握以上計算是解題的關(guān)鍵.7.在一個不透明的口袋中,放置6個紅球,2個白球和n個黃球.這些小球除顏色外其余均相同,數(shù)學小組每次摸出一個球記錄下顏色后再放回,并且統(tǒng)計了黃球出現(xiàn)的頻率,如圖,則n的值可能是()A.12 B.10 C.8 D.16【答案】A【解析】【分析】先根據(jù)圖得到黃球出現(xiàn)的頻率穩(wěn)定在0.6附近,再根據(jù)概率公式表示出,求解即可.【詳解】解:由圖可知,經(jīng)過大量實驗發(fā)現(xiàn),黃球出現(xiàn)的頻率穩(wěn)定在0.6附近解得故選:A.【點睛】本題考查了用頻率估計概率及用概率求數(shù)量,解題的關(guān)鍵是熟練掌握概率公式.8.如圖,將“笑臉”圖標向右平移3個單位長度,再向下平移1個單位長度,則點P的對應點坐標是()A. B. C. D.【答案】C【解析】【分析】根據(jù)向右平移橫坐標加,向下平移縱坐標減列式計算即可.【詳解】解:∵將點向右平移3個單位長度,再向下平移1個單位長度得到對應點,∴,∴點的坐標為:,故選:C.【點睛】本題考查了坐標與圖形變化-平移,平移中點的變化規(guī)律是:橫坐標右移加,左移減;縱坐標上移加,下移減.9.下列圖象能表示一次函數(shù)的是()A. B. C. D.【答案】D【解析】【分析】將y=k(x-1)化為y=kx-k后分k>0和k<0兩種情況分類討論即可.【詳解】y=k(x-1)=kx-k,

當k>0時,-k<0,此時圖象呈上升趨勢,且交于y軸負半軸,無符合選項;

當k<0時,-k>0,此時圖象呈下降趨勢,且交于y軸正半軸,D選項符合;

故選D.【點睛】考查了一次函數(shù)的性質(zhì),解題的關(guān)鍵是能夠分類討論.10.如圖所示,矩形ABCD中AB=3,BC=4,連接AC,按下列方法作圖:以點C為圓心,適當長為半徑畫弧,分別交CA、CD于點E、F;分別以點E、F為圓心,大于EF的長為半徑畫弧,兩弧交于點G;作射線CG交AD于點H,則DH的長度為()A. B. C.1 D.【答案】D【解析】【分析】過H點作HM⊥AC于M,得CH平分∠ACD,故HM=HD,Rt△ABC中由勾股定理得AC=5,由HL得Rt△CHD≌Rt△CHM,設HM=DH=t,則AH=4﹣t,在Rt△AHM中,由勾股定理得t2+22=(4﹣t)2,解得t值即可求解.【詳解】解:如圖,過H點作HM⊥AC于M,由作法得CH平分∠ACD,∵HM⊥AC,HD⊥CD,∴HM=HD,∵AB=3,BC=4,Rt△ABC中,AC5,在Rt△CHD和Rt△CHM中,,∴Rt△CHD≌Rt△CHM(HL),∴CD=CM=3,∴AM=AC﹣CM=5﹣3=2,設DH=t,則AH=4﹣t,HM=t,在Rt△AHM中,t2+22=(4﹣t)2,解得t=1.5,即HD=1.5,故選:D.【點睛】此題考查了作圖-復雜作圖和角平分線的性質(zhì)推知以及勾股定理,根據(jù)作圖步驟CH是的平分線是解答此題的關(guān)鍵.11.為出行方便,近日來越來越多的長春市民使用起了共享單車,圖1為單車實物圖,圖2為單車示意圖,AB與地面平行,點A、B、D共線,點D、F、G共線,坐墊C可沿射線BE方向調(diào)節(jié).已知,∠ABE=70°,車輪半徑為30cm,當BC=60cm時,小明體驗后覺得騎著比較舒適,此時坐墊C離地面高度約為()(結(jié)果精確到1cm,參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,tan70°≈1.41)A.90cm B.86cm C.82cm D.80cm【答案】B【解析】【分析】過點C作CN⊥AB,交AB于M,交地面于N,構(gòu)造直角三角形,利用三角函數(shù),求出CM,再用CM減去MN即可.【詳解】解:過點C作CN⊥AB,交AB于M,交地面于N

由題意可知MN=30cm,

∴在Rt△BCM中,∠ABE=70°,

∴sin∠ABE=sin70°==0.94

∴CM≈56cm

∴CN=CM+MN=30+56=86(cm)

故選:B.【點睛】本題考查了解直角三角形的應用,構(gòu)造直角三角形,將所給角放到直角三角形中,是解題的關(guān)鍵.12.已知拋物線y=ax2+bx+c(a、b、c是常數(shù),a<0)經(jīng)過點(﹣2,0),其對稱軸為直線x=1,有下列結(jié)論:①c>0;②9a+3b+c>0;③若方程ax2+bx+c+1=0有解x1、x2,滿足x1<x2,則x1<﹣2,x2>4;④拋物線與直線y=x交于P、Q兩點,若PQ,則a=﹣1;其中,正確結(jié)論的個數(shù)是()個.A.4 B.3 C.2 D.1【答案】B【解析】【分析】利用數(shù)形結(jié)合思想,根據(jù)已知點和對稱軸求出另一個和x軸的交點坐標(4,0),進而求出大致圖象,由圖象得出①,②,③結(jié)論正確,分別過點P,Q作坐標軸的平行線,它們的交點為A,得出△APQ為等腰直角三角形,利用等腰直角三角形的性質(zhì)和韋達定理求解即可.【詳解】解:∵a<0∴拋物線y=ax2+bx+c開口向下∵拋物線y=ax2+bx+c經(jīng)過點(﹣2,0),其對稱軸為直線x=1由對稱性可知,拋物線經(jīng)過點(4,0)則拋物線的大致圖象如下:

由圖象可知c>0,①正確;當x=3時,y=ax2+bx+c=9a+3b+c,由圖象可知,9a+3b+c>0,②正確;作直線y=-1,當y=ax2+bx+c=-1時,x<﹣2或x>4∴方程ax2+bx+c+1=0有解x1、x2,滿足x1<x2,則x1<﹣2,x2>4,③正確;如圖,分別過點P,Q作坐標軸的平行線,它們的交點為A則△APQ為等腰直角三角形∴AP=AQ,PQ=AP∵拋物線與直線y=x交于P、Q兩點∴∴=0設P點橫坐標m,Q點橫坐標為n∴m,n是方程=0的兩個根∴m+n=,mn=∴AP=|m-n|===∵拋物線y=ax2+bx+c經(jīng)過點(﹣2,0),其對稱軸為直線x=1∴解得∴AP=∵PQ∴×=解得a=-1或-∴④不正確綜上可知,正確結(jié)論有:①②③故選:B.【點睛】本題考查了二次函數(shù)的性質(zhì),一元二次方程的韋達定理求解以及等腰直角三角形的性質(zhì),利用數(shù)形結(jié)合的思想方法直觀的得出結(jié)論是解決問題的關(guān)鍵.二、填空題13.分解因式:n2﹣100=_____.【答案】(n-10)(n+10)【解析】【分析】直接利用平方差公式分解因式得出答案.【詳解】解:n2-100=n2-102=(n-10)(n+10).故答案為:(n-10)(n+10).【點睛】本題主要考查了公式法分解因式,正確應用平方差公式是解題關(guān)鍵.14.小紅在地上畫正方形ABCD,并順次連接各邊中點,得到如圖所示的圖形,然后在一定距離外向正方形內(nèi)擲小石子,若每一次都擲在正方形ABCD內(nèi),且機會均等,則擲中陰影部分的概率是________.【答案】【解析】【分析】用陰影部分的面積除以大正方形ABCD的面積即可求得概率.【詳解】解:觀察圖形可知,陰影部分的面積是大正方形ABCD面積的一半,故擲中陰影部分的概率是.故答案:.【點睛】考查了幾何概率的知識,解題的關(guān)鍵是求得陰影部分的面積.15.如圖,邊長為2的正方形ABCD的對角線AC、BD相交于點O,若以C為圓心,CO的長為半徑畫圓,則圖中陰影部分的面積是_____.【答案】2-π【解析】【分析】陰影面積=S△BCD-S圓,求出OC的長,代入計算即可.【詳解】解:∵正方形ABCD的邊長為2∴OC=∴陰影面積=S△BCD-S圓=×BC×CD-πOC2=×2×2-π()2=2-π故答案為:2-π.【點睛】本題考查正方形的性質(zhì),圓的面積,組合圖形的陰影面積求解,正確的計算能力和運用能力是解決問題的關(guān)鍵.16.已知方程組和方程組有相同的解,則m的值是________.【答案】5【解析】【分析】兩方程組有相同的解,那么將有一組x、y值同時適合題中四個方程,把題中已知的兩個方程組成一個方程組,解出x、y后,代入中直接求解即可.【詳解】解:解方程組解得代入得,.故答案為5.【點睛】本題主要考查了方程組的解的定義和解二元一次方程組,首先求得方程組的解是解題的關(guān)鍵.當給出的未知數(shù)較多時,應選擇只含有2個相同未知數(shù)的2個方程組成方程組求解.17.如圖,AB為⊙O的直徑,點P為其半圓上任意一點(不含A、B),點Q為另一半圓上一定點,若∠POA為x°,∠PQB為y°,則y與x的函數(shù)關(guān)系是_______________.【答案】,且0<x<180【解析】【詳解】試題分析:由圓周角定理,可得∠BOP=2∠Q=2y°,又由鄰補角的定義,可得x+2y=180,繼而求得答案:∵∠BOP和∠BQP是同圓中同弧所對的圓心角和圓周角,∴∠BOP=2∠Q=2y°.∵AB為⊙O的直徑,∴∠AOP+∠BOP=180°,即x+2y=180.∴,且0<x<180.考點:1.由實際問題列一次函數(shù)關(guān)系式(幾何問題);2.圓周角定理.18.如圖,矩形ABCD中,E為CD上一點,F(xiàn)為AB上一點,分別沿AE,CF折疊,D,B兩點剛好都落在矩形內(nèi)一點P,且∠APC=120°,則AB:AD=_____.【答案】##∶1【解析】【分析】如圖,設AD=BC=x.過點P作PH⊥AC于H.解直角三角形求出AC,CD即可解決問題.【詳解】解:如圖,設AD=BC=x.過點P作PH⊥AC于H.由翻折的性質(zhì)可知,PA=PC=BC=x,∵∠APC=120°,PH⊥AC,∴AH=CH,∠APH=∠CPH=60°,∴AC=2AH=2?PA?sin60°=x,∵四邊形ABCD是矩形,∴∠D=90°,∴CD=AB=,∴=,故答案為:.【點睛】此題考查翻折變換,矩形的性質(zhì),解直角三角形等知識,解題的關(guān)鍵是學會利用參數(shù)解決問題,屬于中考常考題型.三、解答題19.計算:.【答案】-2【解析】【分析】根據(jù)零指數(shù)冪,負指數(shù)冪,特殊角度的三角函數(shù)值,絕對值化簡規(guī)則依次計算即可得到答案.【詳解】解:原式【點睛】本題主要考查了實數(shù)運算,零指數(shù)冪:;負指數(shù)冪:(,p為正整數(shù));去絕對值.準確掌握相關(guān)運算法則是解題關(guān)鍵.20.求不等式組的所有整數(shù)解.【答案】不等式組的整數(shù)解為:-1,0,1,2,3.【解析】【分析】先解出每個不等式的解集,即可得到該不等式組的解集,然后即可寫出該不等式組的所有整數(shù)解.【詳解】解:,解不等式①,得,解不等式②,得,所以不等式組的解集為:,所以不等式組的整數(shù)解為:-1,0,1,2,3.【點睛】本題考查了一元一次不等式組的整數(shù)解,解答本題的關(guān)鍵是明確解一元一次不等式的方法.21.如圖,點E,F(xiàn)分別在菱形ABCD的邊BC,CD上,且∠BAE=∠DAF.求證:AE=AF.【答案】見解析【解析】【分析】根據(jù)菱形的性質(zhì)可得∠B=∠D,AB=AD,再證明△ABE≌△ADF,即可得AE=AF.【詳解】證明:∵四邊形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴AE=AF.【點睛】本題考查了菱形的性質(zhì)、全等三角形的判定與性質(zhì),解決本題的關(guān)鍵是掌握菱形的性質(zhì).22.某校舉行了“風雨百年路,青春心向黨”知識競賽,現(xiàn)從七、八年級中各隨機抽取20名學生的測試成績(滿分10分,8分及以上為優(yōu)秀)進行整理和分析如下:七年級20名學生的測試成績?yōu)椋?,8,7,8,7,5,5,9,10,9,7,5,8,7,7,7,9,8,10,7八年級20名學生的測試成績?nèi)缦拢簝蓚€年級分析數(shù)據(jù)如表:年級平均數(shù)眾數(shù)中位數(shù)6分以上人數(shù)百分比七年級7.57bc八年級7.5a7.590%根據(jù)以上信息,解答下列問題:(1)a=______,b=______,c=______;(2)如果八年級參加測試有500名學生,估計成績?yōu)閮?yōu)秀的學生人數(shù)有多少人?(3)根據(jù)以上數(shù)據(jù),你認為七、八年級中哪個年級學生測試成績較好?請說理由.【答案】(1)(2)250人(3)八年級測試成績較好,理由見解析【解析】【分析】(1)根據(jù)題中數(shù)據(jù),重新排列,即可氣得中位數(shù)以及6分以上人數(shù)百分比,根據(jù)統(tǒng)計圖即可求得眾數(shù),(2)根據(jù)統(tǒng)計圖求得八年級8分及以上的百分比乘以500即可求解,(3)根據(jù)八年級成績的中位數(shù)、8分以及以上的優(yōu)秀人數(shù)都大于七年級,然后說明理解即可,答案不唯一.小問1詳解】將七年級的成績從小到大排列如下,5,5,5,7,7,7,7,7,7,7,7,8,8,8,8,9,9,9,10,10第10個和第11個數(shù)分別為7,7故中位數(shù)為7,即6分以上人數(shù)百分比為根據(jù)條形統(tǒng)計圖可知八年級的成績的眾數(shù)為,即故答案為:【小問2詳解】8分及以上為優(yōu)秀,八年級8分及以上的百分比為500【小問3詳解】八年級的學生測試成績較好,七年級8分及以上的百分比為<八年級成績的中位數(shù)、8分以及以上的優(yōu)秀人數(shù)都大于七年級,故八年級的學生測試成績較好.【點睛】本題考查了求中位數(shù),眾數(shù),根據(jù)樣本估計總體,掌握以上知識是解題的關(guān)鍵.23.如圖,AB是半圓O的直徑,半徑OC⊥AB,D是OC延長線上任意一點,DE切半圓O于點E,連結(jié)AE,交OC于點F.(1)求證:DE=DF.(2)若CD=2,tan∠AFO=3,求EF的長.【答案】(1)見解析(2)【解析】【分析】(1)連接OE,根據(jù)等腰三角形的性質(zhì)得到∠A=∠OEA,根據(jù)余角的性質(zhì)和對頂角的性質(zhì)即可得到∠DFE=∠DEF,根據(jù)等腰三角形的判定定理即可得到結(jié)論;(2)設OA=3x,OF=x,得到OC=OA=3x,根據(jù)勾股定理得到DE=4,OE=3,OD=5,過E作EH⊥OD于H,根據(jù)三角形的面積公式和勾股定理即可得到結(jié)論.【小問1詳解】證明:連接OE,∵OE=OA,∴∠A=∠OEA,∵DE切半圓O于點E,∴∠DEO=90°,∴∠DEF+∠AEO=90°,∵OC⊥AB,∴∠AOC=90°,∴∠A+∠AFO=90°,∴∠AFO=∠DEF,∵∠AFO=∠DFE,∴∠DFE=∠DEF,∴DF=DE;【小問2詳解】解:∵tan∠AFO3,∴設OA=3x,OF=x,∴OC=OA=3x,∴DF=2+2x,∵∠DEO=90°,∴OE2+DE2=OD2,∴x2+(2+2x)2=(2+3x)2,∴x=1,x=0(不合題意舍去),∴DE=4,OE=3,OD=5,過E作EH⊥OD于H,∴S△DEODE?OEEH?OD,∴EH,∴OH,∴HF,∴EF.【點睛】本題考查了切線的性質(zhì),圓周角定理,等腰三角形的性質(zhì),勾股定理,三角函數(shù)的定義,正確地作出輔助線是解題的關(guān)鍵.24.為支援貧困山區(qū),某學校愛心活動小組準備用籌集的資金購買A、B兩種型號的學習用品.已知B型學習用品的單價比A型學習用品的單價多10元,用180元購買B型學習用品與用120元購買A型學習用品的件數(shù)相同.(1)求A,B兩種學習用品的單價各是多少元;(2)若購買A、B兩種學習用品共100件,且總費用不超過2800元,則最多購買B型學習用品多少件?【答案】(1)A,B兩種學習用品的單價分別為20元和30元(2)80【解析】【分析】(1)設A種學習用品的單價為元,則B種學習用品的單價為元,由題意得,然后解分式方程解即可;(2)設最多購買B型學習用品件,則購買A型學習用品件,由題意得,,解不等式即可.【小問1詳解】解:設A種學習用品的單價為元,則B種學習用品的單價為元由題意得去分母得,移項合并得,系數(shù)化為1得,經(jīng)檢驗,是原分式方程的解∴元∴A、B兩種學習用品的單價分別為20元和30元.【小問2詳解】解:設最多購買B型學習用品件,則購買A型學習用品件由題意得,解得∴最多購買B型學習用品80件.【點睛】本題考查了分式方程的應用,一元一次不等式的應用.解題的關(guān)鍵在于根據(jù)題意正確的列等式與不等式.25.已知反比例函數(shù)y圖象過第二象限內(nèi)的點A(﹣2,2),若直線y=ax+b經(jīng)過點A,并且經(jīng)過反比例函數(shù)y的圖象上另一點B(m,﹣1),與x軸交于點M.(1)求反比例函數(shù)的解析式和直線y=ax+b解析式.(2)若點C的坐標是(0,﹣2),求△CAB的面積.(3)在x軸上是否存在一點P,使△PAO為等腰三角形?若存在,請求出P點坐標;若不存在,請說明理由.【答案】(1);(2)9(3)存在,P點坐標為或或或【解析】【分析】(1)將代入得,進而可得反比例函數(shù)解析式;將代入,得,可得點坐標,然后將坐標代入中求出的值,進而可得的解析式;(2)如圖,將代入中求解,可得點坐標,根據(jù),計算求解即可;(3)設,由題意知為等腰三角形,分3種情況求解:①當時,即,求解滿足要求的解即可;②當時,,,進而可得點坐標;③當時,即,求解滿足要求的解即可.【小問1詳解】解:∵反比例函數(shù)過點A∴將代入得∴反比例函數(shù)解析式為;將代入,得∴將,代入得解得∴直線y=ax+b解析式為.【小問2詳解】解:如圖將代入得∴∴∴的面積為9.【小問3詳解】解:存在.設,由題意知為等腰三角形,分3種情況求解:①當時,即解得,(不合題意,舍去)∴;②當時,∵∴∴的坐標為,;③當時,即解得∴;綜上所述,在x軸上存在一點P,使△PAO為等腰三角形,P點坐標為或或或.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的綜合,反比例函數(shù)與一次函數(shù)的解析式,等腰三角形,反比例函數(shù)與幾何綜合等知識.解題的關(guān)鍵在于對知識的熟練掌握與靈活運用.26.如圖1,在等邊△ABC中,點D,E分別在邊AB,AC上,AD=AE,連接BE,CD,點F,G,H分別是BE,CD,BC的中點.(1)觀察猜想:圖1中,△FGH的形狀是;(2)探究證明:把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,△FGH的形狀是否發(fā)生改變?并說明理由;(3)拓展延伸:把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=3,AB=7,請直接寫出△FGH的周長的最大值.【答案】(1)等邊三角形;(2)△FGH的形狀不發(fā)生改變,理由見解析;(3)15【解析】【分析】(1)先證BD=CE,再根據(jù)中位線定理可知FHCE,F(xiàn)H=CE,GHBD,GH=BD,可證明FH=GH,∠FHG=60°,即可證明;(2)連接CE,BD,通過SAS證明△ABD≌△ACE,得BD=CE,∠ABD=ACE,由(1)同理可證FH=GH,∠FHG=60°,即可證明;(3)由(2)可知:GH=BD,則當BD的值最大時,GH的值最大,在△ABD中,利用三角形三邊關(guān)系可求出BD的最大值.【小問1詳解】解:如圖1,∵△ABC為等邊三角形,∴AB=AC,∠ABC=∠ACB=60°,∵AD=AE,∴BD=CE,∵點F,G,H分別是BE,CD,BC的中點.∴FHCE,F(xiàn)H=CE,GHBD,GH=BD,∴FH=GH,∠BHF=∠BCA=60°,∠CHG=∠CBA=60°,∴∠FHG=60°,∴△FHG為等邊三角形,故答案為:等邊三角形;【小問2詳解】解:△FGH的形狀不發(fā)生改變,仍然為等邊三角形,理由如下:如圖3,連接CE,BD,∵△ABC是等邊三角形∴AB=AC,∠BAC=60°,∵∠BAC=∠DAE=60°,∴∠BAC-∠CAD=∠DAE-∠CAD∴∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=ACE,與(1)同理可得:FHCE,F(xiàn)H=CE,GHBD,GH=BD,∴FH=GH,∠BHF=∠BCE,∠CHG=∠CBD,∴∠BHF+∠CHG=∠BCE+∠CBD=∠ABC﹣∠ABD+∠ACB+ACE=60°+60°=12

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論