版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
CENTERFORDATAINNOVATION
1
ExploringData-SharingModelstoMaximizeBenefitsFromData
ByGillianDiebold|October16,2023
Data-driveninnovationhasthepotentialtobeamassiveforceforprogress.Datasharingenablesorganizationstoincreasetheutilityandvalueofthedatatheycontrolandgainaccesstoadditionaldatacontrolledbyothers.Thisreportevaluatestheadvantagesanddisadvantagesofsixcommondata-sharingmodelsandoffers
recommendationsforpolicymakerstopromotegreateruptakeofthesedata-sharingmodelstomaximizethe
economicandsocialbenefitsofdataintheUnitedStates.
Individualsandorganizationsusedatatomakebetterdecisionsandobtainbetterinsights,leadingtobenefitsinabroadrangeofareas.
1
Buttouse
datatoitsfullestpotential,individualsandorganizationsneedtobeabletocombine,augment,andanalyzeinformationfromdifferentsources.Intheprivatesector,datasharingenablesbusinessestoinnovatewithpartners,suchastacklingcommonchallengesandprovidingbetterexperiencestoconsumers.Inthepublicsector,itenablesgovernmentagenciestobuild
oninformationcollectedbyotherorganizationstomakebetterdecisions,offerpersonalizedservices,engageinevidence-basedpolicymaking,andgleannewinsights.Andamongacademicsandnonprofitorganizations,datasharingadvancesscientificbreakthroughsandenablesdatafor
socialgood.
Butattainingthesebenefitsrequiresenablingdatasharingtoitsfullestpotentialsothatthosewhocanusedataproductivelyhaveaccesstoit.Unlikemostresources,suchaslandoroil,dataisnonrivalrous,meaningthesupplyofdataisnotreducedwhenothersuseit.Datacanbeusedmultipletimesandinmultiplewaysbyvariousentitieswithoutbeing
depleted.
2
WhilemanyorganizationsintheUnitedStatessharedataincertaininstances,manyoftheseinitiativesareadhoc,andtherearefewbestpracticesforsharingdata.IfpolicymakerswanttheUnitedStatesto
CENTERFORDATAINNOVATION
2
havearobustAIanddata-drivensociety,theyneedtotakestepstoboostdatasharing.
Thisreportoffersastepinthatdirectionbyevaluatingthebenefitsanddrawbacksofsixdifferentdata-sharingmodelsandoffers
recommendationsonhowpolicymakerscanimplementorexpandtheuseofcertainmodels.Giventhatdifferentmodelsservedifferentneeds,
policymakersdonotneedtopickaone-size-fits-allsolution,butrather
shouldfacilitatetheadoptionofmultipledata-sharingmechanismsintheirpursuitofadata-drivensociety.
DATA-SHARINGMODELS
Datasharingistheprocessofmakingdataaccessibletoothers,whetheritbebetweenorwithinorganizationsorbetweenindividualsand
organizations.Approachestodatasharingcanvarywidelyandcaninvolvevarioustypesofactorsandhavedifferinggoals.Forexample,two
businessesmayusecontractualagreementstosharedatatofacilitatecollaborationonalarge-scaleproject.Ormultipleindividualsmaysharedatawiththroughanindependentorganizationforfinancialgain.
Data-sharingmodelslargelyvarybasedonwhocontributesthedata,whohasaccesstothedata,whostoresandmanagesthedata,andwho
benefitsfromthedatasharing.Datacontributorscanbeanyactorthat
ownsorcreatesdata,includingindividuals,privatecompanies,governmentagencies,nonprofits,andresearchinstitutions.Likewise,thosesame
actorscanalsobetheonesreceivingdatainadata-sharingarrangement.
Forexample,agovernmentagencymightsharehealthdatawith
pharmaceuticalcompaniesinvestigatingnewdrugs,orapharmaceuticalcompanymightshareitsdataonvaccinedistributionwiththegovernmentorpublichealthresearchers.Theseagreementscanbeone-way,where
oneactorsharesdatawithanotherpartyinordertoreceivespecific
insights,orreciprocal,whereeachactorreceivesdata.Lastly,data-sharingmodelsdifferdependingonwhoreceivesandstoresthedata,suchasthedataowneroranintermediaryinstitution.Thesefactorsarethecore
differencesamongdata-sharingmodels.
Thefollowingsectionexploresandevaluatessixdifferentmodels,
illustratingtheirrespectivestrengthsandweaknessesandoffering
recommendationsforU.S.policymakersonhowtobestimplementandincreasedatasharingacrossthenation.
Data-SharingPartnerships
Data-sharingpartnershipsinvolvecollaborativeeffortsbetweendifferententities,suchasacademicinstitutions,researchorganizations,industrypartners,individualconsumers,andgovernmentagencies,toshareandexchangedataforthepurposeofconductingresearch,collaboratingonnewproducts,andenhancingevidence-baseddecision-making.These
partnershipsaimtoleveragethecollectiveexpertise,resources,anddata
CENTERFORDATAINNOVATION
3
holdingsofmultiplepartiestoaddresscomplexquestionsandgeneratevaluableinsights.Thistypeofdata-sharingarrangementusuallyrequires
clearagreementstodefinedataaccessandusagerightsandthe
ownershipofintellectualproperty(IP),butspecificcharacteristicsmayvarydependingonthetypeofdatainvolvedandthenatureofthecollaboration.
Forexample,healthcareisonefieldinwhichpartnershipsbetween
organizationssuchashospitals,researchinstitutions,andmedical
providerscanhelpleveragedataanalyticsandartificialintelligence(AI)in
healthcareresearch,ultimatelyimprovingpatientoutcomesand
optimizingservicedelivery.
3
The23andMePatient-CentricResearchPortalallowscustomerstovoluntarilycontributetheirgeneticandself-reportedhealthinformationtoresearchstudies.
4
Thispartnershipbetween
23andMe,agenomicsandbiotechnologycompany,anditscustomers
enablestheadvancementofscientificunderstandingofvariousdiseasesandtraits.Researcherslinkgeneticdatainordertostudytopicssuchasancestry,traits,andevenrarediseases.
5
Data-sharingpartnershipshaveanumberofbenefitsforallpartners.Forresearchers,suchpartnershipsprovideaccesstogreaterdataforanalysisthantheywouldhaveontheirown,allowingforgreaterinsights.These
partnershipsalsohelpovercomethelimitationsofasingledatasetthatmaybetoosmallforcertaintypesofstatisticalanalysisorbemissing
relevantinformationneededforinvestigation.Infieldswheredataisoftenhighlysensitive,suchashealthcare,researchpartnershipsprotectthe
sensitivenatureofpatientinformationwhileallowinginstitutionstocollaborateandaggregateinsights.Suchpartnershipsalsomeanlessduplicationofdata,savingresearcherstimeandmoney.
Atthesametime,thisdata-sharingmodelhassomeconstraints.For
example,whendata-sharingpartnershipsarebetweentwocompetinginstitutions,thereareoftenIPandcompetitionconcerns.Likewise,suchcollaborationsmayinvolvedatasetsofvaryingqualityandstandards.
Theseissuesmustberesolvedbeforeanysharingcanoccur.
Recommendation:Facilitatedata-sharingpartnershipswithmodel
contracts.
Partnershipsbetweentwoentitiesarethemostbasicmodelofdata
sharingandshouldbesupportedbypolicymakers.Whenitcomestodata-sharingpartnerships,organizationsareoftenforcedtoreinventthewheelandgothroughanewcontractandnegotiationsprocesseachtimeanewopportunityforcollaborationcomesup.Policymakersinfederalagenciesshouldalleviatethisroadblockandfacilitatemoredata-sharing
partnershipsbydevelopingacontracttemplatethatorganizationscan
adoptandcustomize(e.g.,typeofdata,retentionterms,IPrights,etc.).
SomecountriessuchasSingaporealreadyprovidethistypeofguidancefordata-sharingpartnershipsandhaveacceleratedresearchandinnovationasaresult.
6
Moreover,theFederalTradeCommissionandDepartmentof
CENTERFORDATAINNOVATION
4
Justiceshouldprovideguidanceoncomplyingwithantitrustrulesoncollusionwhenusingthesemodelpartnershipagreements.
DataConsortia
Dataconsortiaalloworganizationstopooltheirdataforthebenefitofthegroup.
7
Whereasdata-sharingpartnershipsinvolvebilateralagreements,dataconsortiaconstituteaseriesofreciprocalsharingagreements.Theseconsortiacanexisttoaddressaspecificissueorforthegeneraland
ongoingexchangeofinformation.Forexample,agroupoftownsalongarivermightformadataconsortiumtosharedataaboutbacteriainthe
water,oragroupofhospitalsmightformadataconsortiumtosharedataaboutaspecificraredisease.Likewise,onlinemarketplacesmightformadataconsortiumtoexchangedataaboutthird-partysellersthataresellingcounterfeits.
8
Dataconsortiahavelongplayedaroleinfillingdatagaps.Forexample,theClinicalResearchDataSharingAllianceexiststoacceleratedrugdiscoverybysharingdatacollectedthroughouttheclinicaldevelopmentprocess.
9
Membersoftheconsortiumincludebiopharmaceuticalcompanies,
academicinstitutions,nonprofits,andpatientadvocacygroups,which
cometogetheraroundtheglobetoprovidecollectiveaccesstoclinicaldataandhelpdiversifystudypopulations.AnotherexampleoftheutilityofdataconsortiaistheLinguisticDataConsortium(LDC)attheUniversityof
Pennsylvania.
10
Thisgroupofuniversities,libraries,corporations,andgovernmentlabswasfoundedin1992“toaddressthecriticaldatashortagefacinglanguagetechnologyresearchanddevelopment.”
MembersoftheLDCsharelanguageresources,suchasspeechandtextdatabases,lexicons,andotherresources,thatplayabigroleintraininglargelanguagemodels.
Theprimarybenefitofdataconsortiaisthatitpromotesmoredatasharingandaggregation.Onlymembersofagivenconsortiumcanaccessthedata,andconsortiummemberstypicallymustcontributetothegroup.
Eventually,adataconsortiumwillcreateatipping-pointeffectinwhichitismorebeneficialtobeinthecollectivethanout.Onceatippingpointis
reached,aconsortiumensuresongoingdatasharingandgenerallypromotesapro-data-sharingworld.
Dataconsortiadohavesomedrawbacks.Beforeacriticalmassisreachedandatippingpointeffectoccurs,someorganizationsmightbebetteroffhoardingtheirdatafortheirexclusiveuse.Thismeansconsortianeedtoconsiderjoiningincentivesintheearlydaysofaneffort.
Recommendation:Surveyandidentifyopportunitiesforcross-sectordataconsortia.
Federalagenciesshouldcatalogdataconsortiathatexistwithinspecificsectorsandfacilitatethecreationofnewcross-sectorconsortiaforcriticalareas.Dataconsortiacanprovidepolicymakerswithaccesstoabroader
CENTERFORDATAINNOVATION
5
andmorediverserangeofdatasources,includingfromotheragenciesandtheprivatesector.Forexample,policymakersininterdisciplinaryagenciessuchastheFederalEmergencyManagementAgencyshouldcreate
consortiathatbringtogetherrelevantstakeholdersfromagenciessuchastheEnvironmentalProtectionAgency,theDepartmentofAgriculture,andtheDepartmentofHousingandUrbanDevelopmentaswellasprivate
sectororganizationstocoordinateongoingdatasharingandensuremorecoordinatedandeffectivedisasterresponse.
DataTrusts
Datatrustsareatypeofdatagovernanceframeworkthatmanage,protect,andsharedataforanagreedpurposeonbehalfofindividualsand
organizations.
11
Althoughtherecanbeconflictingdefinitionsofdatatrust,thecharacteristicsofthistypeofdata-sharingmechanismremainthe
same.Atthecoreofadatatrustisthedelegationofdatarightstoan
independentintermediary,knownasatrustee,whomakesdata-sharingdecisionswithresearchers,privatecompanies,andpublic-sectorbodiesthatbenefitthedatasubjects.
12
Datatrustsgivestructureandrulesformanagingandusingaggregateddataandhelpunlockitsvalueforthepublicinterest.
Datatrustsareanemergingmodelwithanumberofvariationsbeing
pilotedaroundtheworld.TheUnitedKingdomhastakenaparticular
interestinthedatatrustmodelforhealthcareapplications.Forexample,theUKBiobankmanagesthegenomicdataofmorethan500,000
individualswhohavedonatedtheirdataforuseinresearch.
13
Thedataisanonymizedandmadeavailabletoresearchersaroundtheworldto
acceleratescientificdiscoveryandimprovepublichealth.TheBiobankactsasatrusteeforthisdata—inotherwords,ithasafiduciaryresponsibilitytoholdandsharethedataforthebenefitsoftheUKpublic.Additionally,theUK’sNationalHealthService(NHS)isdevelopinganNHSFederatedDataPlatformtoaggregateallhealthdata,includingpersonalhealthrecords,
clinicaldata,andpublicdata,inonecentralizedplatformindividualsandtheprivatesectoralikecanaccess.
14
Thereareanumberofbenefitstodatatrusts,includingincreasingsocietalbenefitsfromdata,streamliningprocesses,andunlockingmorevaluefromdatabyenablingsecondaryuse.Overall,datatrustsareaninstitutionthatmultipleentitiescancontributetoandaccess,therebyfacilitatingongoingtransparencyandaccountabilityandconsistentrulesforthereuseofdata.Governmentscanthereforeaccessprivatesectordatainkeyareasunderaclearsetofagreements,andviceversa.InthecontextofAI,theycan
facilitateaccesstodiverseandhigh-qualitydatasets,enablingAI
developerstotrainandvalidatemodelsonmorecomprehensiveand
representativedata.Overall,datatrustsprovideatrustedframeworkformanagingdataresponsibly.
CENTERFORDATAINNOVATION
6
Atthesametime,datatrustsdocomewithcertainchallenges.Giventheoften-sensitivenatureofthedataheldbyatrust,datatrustscanbe
difficulttoimplementandsometimesaremetwithresistance.Alackof
socialtrustindatasharingcanleadtoprojectsbeinghelduporeven
canceled,suchasinthecaseofInBloom,aproposeddatatrustfor
educationthatwasmetwithsomuchstakeholderresistancethatitfailedtolaunch.
15
Moreover,datatrustscanberesource-heavy,requiringalotoffinancial,technical,andhumanresources.Lastly,datatrustscanbeat
oddswithdataprotectionlawsfocusedonsafeguardingindividualrights—whicharecommoninmanyWesterncountries—becausetheyfocuson
collectiveempowermentandbenefit.Thiscollectivemodelcanbedifficulttoimplementinthecontextofstringentdataprivacylaws.
Recommendation:Implementsector-specificdatatrusts.
TherearespecificdomainsintheUnitedStates,suchashealthcare,
transportation,education,andenvironmentalresearch,inwhichthe
establishmentofsector-specificdatatrustscouldprovidesignificant
benefitstosociety.Thesetrustscouldbringtogetherstakeholdersfrom
relevantsectorstopoolandgoverndata,enablingresearch,improving
servicedelivery,anddrivingsocietaloutcomesinspecificareas.
Consolidatingdataassetswithinaspecificsectorwouldenablea
comprehensiveunderstandingofsector-specificchallenges,trends,and
opportunities.Federalagencies,suchastheEnvironmentalProtection
Agency,theDepartmentofHealthandHumanServices,andthe
DepartmentofEducation,shouldestablishprogramstocreateandoperatedatatrustsintheirrespectivedomains.Byprovidingguidanceand
capacity-buildingsupport,federalagenciescouldhelpthedatatrustsnavigatethelegalandregulatoryframeworksspecifictoeachindustry.
DataCooperatives
Datacooperativesareaformofbottom-updatagovernanceinwhich
individualsvoluntarilypooltheirdatatonegotiatecollectivelywithprivatecompaniesandotherentities.Membersofadatacooperativeestablish
rulesondatasharingdesignedtobenefitthoseinthegroup.These
cooperativesoftenaimtomonetizemembers’collectivedataandare
fundedbytherevenuegeneratedfromdata-sharingagreements.Data
cooperativesaresimilartoagricultural,housing,andconsumercredit
cooperativesinwhichtheorganizationisownedandjointlymanagedbyitsmembers,whosharethebenefits.
Forexample,Driver’sSeatCooperativepoolsgigeconomyworkers’
smartphoneandmobilitydata,allowingthemtooptimizetheirincomes.
16
Thecooperativefunctionsthroughanappthatlinksmultiplesourcesofanindividualdriver’sdataandanalytics,thenaggregatesthatdataforall
membersofthecollective.Driver’sSeatalsosellsthesegroupinsightstolocalgovernmentslookingfordatatohelptransportationplanning
decisionsandsplitsdividendsamongmembers.Thistypeofdata-sharing
CENTERFORDATAINNOVATION
7
arrangementisprimarilydesignedtoempowerworkerstousetheirdataasacollectivebargainingmechanism.Datacooperativesalsoexistinthe
agriculturalsectorasameansofempoweringfarmerswithshared
knowledge.CooperativessuchastheNationalAgriculturalProducersDataCooperativeandtheGrower’sInformationServiceCooperativeoperateatthenationallevelandpooldatafromproducers,smallbusinesses,publicuniversities,andnonprofitsinordertoprovidefarmersandgrowerswithagriculturaldataandhelpenhancethesustainabilityoftheiroperations.
17
Onechallengeisthattheeconomicsofdatacooperativesdonotalwayswork.
18
Thevalueofeachindividualdatacontributormightberelativelysmall,butwithoutwidespreadparticipationfrommanydataholders,thecooperativewillfail.Datacooperativesthereforehavetocarefullychoosehowtocompensatemembers—toolittle,andnotenoughcontributorswilljoin;toomuch,anditisnotsustainable.
Datacooperativesarearelativenoveltyandmayhavelimitedapplications.However,justaslaborunionsprovideanimportantmechanismfor
collectivebargainingforworkers,datacooperativescanallowindividualstocollectivelynegotiatebenefitsfortheirdata.
Recommendation:Exploredatacooperativesinareaswherenondata
cooperativesandcollectivebargainingoccurs.
Datacooperativesareusefulwhenindividualsmaybereluctanttoshare
theirdatabecausetheyfearathirdpartywilluseitagainsttheirinterests,suchassmallfarmerswhoareconcernedthatlargeagricultural
companieswillusetheirdata,andinsightsfromtheirdata,toprofitattheirexpense.
19
Formingdatacooperativescangivethesedataholdersmore
negotiatingpowertosharedatawithothersontheirpreferredtermsandovercomereluctancetocollectandsharedata.Federalagenciesthat
alreadyprovideoversightorsupportforvarioustypesofnondata
cooperatives,suchastheU.S.DepartmentofAgriculture,theNational
CreditUnionAdministration,andtheNationalLaborRelationsBoard,
shouldconvenestakeholdersonthepotentialvalueofdatacooperativesintheirrespectiveareastopromotegreaterdatasharing.
FederatedDataAnalytics
Federateddataanalyticsisawaytoallowdataanalysistooccureven
whenorganizationsareunableorunwillingtosharetheirdata.Federateddataanalyticsreferstoadistributedapproachtodataprocessinginwhichdataisanalyzedindisparatelocationsandonlytheaggregatedinsightsarebroughttoacentralizedlocation.Forexample,acompanymightuse
federateddataanalyticstoanalyzedatastoredonitscustomers’deviceswithoutmovinganyofthatcustomerdatatothecompany.Instead,thecompanywouldonlyreceivetheresultsoftheanalytics.
20
Federateddataanalytics,includingmethodssuchasfederatedlearning,allowsdata
insightstobeobtainedwithoutsharingthedataitself.Bynotsharingthedata,thismethodcanassuagefearsaboutorganizationsaccessingor
CENTERFORDATAINNOVATION
8
storingsensitivedata,suchasconcernsaboutprivacyforindividualsorproprietarycompanyinformation.
21
Forexample,biopharmaceuticalcompanyBoehringerIngelheimand
precisionmedicinesoftwarecompanyLifebitBiotechhavepartneredto
buildascalablefederatedanalyticsplatformtocapturegenomicsinsightsfrombiobankdata.
22
Federatedanalyticsinthiscasepreservestheprivacy
ofthehighlysensitivebiomedicaldatabutstillallowsresearcherstoaccessinsightsfromindividualdatastoresandgeneratemedical
innovations.
Federatedanalyticshasanumberofbenefits,includingprovidinganewwaytoaccesslargequantitiesofdata.Forexample,biomedicalresearchandclinicaltrialsrequirepatientdatathatistypicallyheldbyanumberofdifferenthealthcareinstitutionsandboundbystrictprivacylaws.
23
Federatedanalyticsenablesprivacy-preservinganalysesofdatasets
withoutrevealinganyspecificpatientdata;andeachdataproviderretainscontrol.Thistypeofdatasharingcanenableprecisionmedicineandis
criticalinsituationswhereonedatasetfromoneproviderwon’tbeenoughtoidentifymeaningfulpatterns,suchasinthecaseofraredisease
research.
24
Eventually,federatedhealthdatanetworkscanfacilitatelarge-scaleanalysisacrossinstitutions,regions,andborders,apossibilitybeingconsideredbytheEU-U.S.TradeandTechnologyCouncil.
25
Atthesametime,federatedanalyticshasafewdrawbacks,including
problemsofcost,scalability,stakeholderresistance,andlackoftechnicalreadinessininstitutions.Asanemergingdata-sharingtechnique,
computingcostsforfederateddataanalyticsmaybehighandprohibitiveformanyapplications.Therearealsolimitedlarge-scaleexamplesof
federatedanalyticsatwork,particularlyinfieldssuchashealthcare,whichcreatesproblemsofscalabilitygiventhelackofablueprintforsome
sectors.Moreover,notallinstitutionsarereceptivetofederatedanalyticsortechnicallyequippedtoenableit.
26
Federatedanalyticsrequiresa
scalableplatformthatcandealwithlargequantitiesofdata,aswellasadvancedapplicationprogramminginterfaces(APIs)thatallowfor
coordinationbetweenplatforms.
27
Recommendation:ContinuefundingR&Dforfederatedanalytics.
TheWhiteHouseOfficeofScienceandTechnologyPolicyrecentlyreleaseda“NationalStrategytoAdvancePrivacy-PreservingDataSharingand
Analytics,”whichoutlinestheimportanceoffederatedanalyticsandotherprivacy-enhancingtechnologiestoimprovethevalueofdataforthepublicbenefitwhileprotectingindividualprivacy.
28
Whilesuchareportis
importanttoorganizingpolicyresponsetofederateddata-sharingmodels,federatedanalyticsshouldnotbeputonapedestalorconsideredasilverbullettodata-sharingdilemmas.Insomeways,federatedanalyticsexistsasatechnicalsolutiontoasocialproblemofdistrustinthecollectionanduseofdataorthelegalbarrierstodatasharingbetweendifferent
CENTERFORDATAINNOVATION
9
countries’dataprotectionlaws.However,federatedanalyticsdoesmakesenseasanoptionwhendatasharingisotherwisenotfeasible,so
policymakersshouldfundresearchanddevelopment(R&D)effortsinthisfieldtodevelopthiscapabilityanddeterminewhichsectorsstandto
benefitthemostfromfederatedanalytics.
CooperativeResearchandDevelopmentAgreements
CooperativeResearchandDevelopmentAgreements(CRADAs)are
partnershipsbetweenthegovernmentandprivatesectorinwhich
governmentresearchinstitutionssharedatawithprivatesectorpartnerstofacilitatethecommercializationofR&Dprojects.
29
Underthese
agreements,thegovernmentprovidespersonnel,services,facilities,IP,equipment,data,andmoretotheircollaborators—butnofunding.The
partners,whichcanbeprivatecorporations,nonprofits,universities,orevenstategovernments,providethesameservicesbutcanalsoprovidefundingfortheR&Defforts.
30
CRADAsallowprivatesectorpartnerstofileforpatentsandretainpatentrightswhileensuringthegovernmentgetsalicenseforanycommercializedproduct.
31
Forexample,theNationalOceanandAtmosphericAdministration(NOAA)usesCRADAstoleveragethevalueofitsdatasetsandbetterensurepublicaccesstodata.TheNOAABigDataInitiativebeganin2015toenlistprivatecompaniessuchasIBM,Microsoft,andAWStodevelopsolutionsto
increaseutilizationandaccesstoitsdata.
32
Duetobudgetaryandsecurityconstraints,NOAAcouldnotkeepupwithpublicdemandforaccessto
criticaldatasetsofthingssuchasweatherradardata,satelliteimagery,
historicalclimatedata,informationonfisheries,etc.
33
Theagencywantedtopromotetheuseofitsdataanddemocratizeaccess,whilecollaboratorshadtheinfrastructureexpertise.ThispartnershipreducedloadsonNOAAsystemsandbudgetsandcreatednewbusinessopportunitiesforthe
partnercompanies.
CRADAshaveanumberofbenefits.First,theyhavenoimpacton
governmentbudgets,astheyprimarilyutilizeexistinginfrastructureandsimplymakegovernmentandprivatesectorcollaborationmoreefficientandeffective.CRADAsalsoprotectIPandallowpartnerstomonetize
solutions,meaningtheyhavebuilt-inincentives.Atahighlevel,theseagreementshelpexpandandenhancetheexistingexpertiseof
government,industry,andacademiaandcontributetooverallnationalcompetitivenessandspurmoreinnovation.
CRADAsarehighlyfocusedandcontractualinnature,meaningtheyneedauthorizationandcarefulnegotiationoftermsrelatedtoliabilityandIP.
34
Forexample,federalresearchmustbemadeavailabletothepublic,so
CRADAsmustworkoutwaystowithholdresearchresultsforacertain
periodoftimeinordertoallowtheprivatepartnertopatentanyinventionsforcommercialuse.Whilefederalresearchinstitutionsareallentitledtoundertakethistypeofresearchagreement,notallmayhaveopportunities
CENTERFORDATAINNOVATION
10
forsuchcollaboration,orevenwantit.GiventhatCRADAsoccuronaproject-by-projectbasis,theydonotnecessarilyensureongoingpublic-privatepartnerships.
Recommendation:EvaluateareaswhereR&DcanbenefitfromCRADAarrangements.
ManygovernmentagenciesalreadyuseCRADAs,particularlyinthe
physicalandmedicalsciences,andfederalagenciesshouldcontinuetopromoteandauthorizethem.Giventhemanybenefitsofthistypeofdata-sharingagreement,CongressshouldasktheGovernmentAccountabilityOfficet
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 景區(qū)服務(wù)設(shè)施維護(hù)制度
- 罕見腫瘤的微生物組與免疫治療
- 預(yù)警盯防制度
- 2026山西醫(yī)科大學(xué)第二醫(yī)院急需緊缺高層次人才招聘8人備考題庫及答案詳解(考點梳理)
- 2026廣東佛山市順德區(qū)龍?zhí)缎W(xué)招聘語文、數(shù)學(xué)臨聘教師4人備考題庫及答案詳解(新)
- 銷售人員獎罰制度
- 罕見腫瘤的個體化治療治療策略優(yōu)化經(jīng)驗與推廣-1
- 2025年建筑施工企業(yè)數(shù)據(jù)安全管理制度
- 汽車修理廠財務(wù)制度
- 2026四川天府云數(shù)據(jù)科技有限責(zé)任公司招聘1人備考題庫完整答案詳解
- 2025年松脂市場調(diào)查報告
- 2025年英語培訓(xùn)機構(gòu)學(xué)員合同示范條款協(xié)議
- 一年級地方課程教案
- SF-36評估量表簡介
- GB/T 10454-2025包裝非危險貨物用柔性中型散裝容器
- 河南省三門峽市2024-2025學(xué)年高二上學(xué)期期末調(diào)研考試英語試卷(含答案無聽力音頻及聽力原文)
- 睡眠科普課課件
- 2025年中遠(yuǎn)海運集團招聘筆試備考題庫(帶答案詳解)
- 保密車間出入管理制度
- 智能網(wǎng)聯(lián)汽車技術(shù)課件:車路協(xié)同控制
- 勞務(wù)派遣培訓(xùn)計劃方案
評論
0/150
提交評論