2023-2024學(xué)年河北容城博奧學(xué)校高中高三第五次模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
2023-2024學(xué)年河北容城博奧學(xué)校高中高三第五次模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
2023-2024學(xué)年河北容城博奧學(xué)校高中高三第五次模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
2023-2024學(xué)年河北容城博奧學(xué)校高中高三第五次模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
2023-2024學(xué)年河北容城博奧學(xué)校高中高三第五次模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年河北容城博奧學(xué)校高中高三第五次模擬考試數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線(xiàn)條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列{an}滿(mǎn)足a1=3,且aA.22n-1+1 B.22n-1-12.如圖在直角坐標(biāo)系中,過(guò)原點(diǎn)作曲線(xiàn)的切線(xiàn),切點(diǎn)為,過(guò)點(diǎn)分別作、軸的垂線(xiàn),垂足分別為、,在矩形中隨機(jī)選取一點(diǎn),則它在陰影部分的概率為()A. B. C. D.3.已知函數(shù),其中,記函數(shù)滿(mǎn)足條件:為事件,則事件發(fā)生的概率為A. B.C. D.4.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.5.?dāng)?shù)學(xué)中的數(shù)形結(jié)合,也可以組成世間萬(wàn)物的絢麗畫(huà)面.一些優(yōu)美的曲線(xiàn)是數(shù)學(xué)形象美、對(duì)稱(chēng)美、和諧美的結(jié)合產(chǎn)物,曲線(xiàn)恰好是四葉玫瑰線(xiàn).給出下列結(jié)論:①曲線(xiàn)C經(jīng)過(guò)5個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));②曲線(xiàn)C上任意一點(diǎn)到坐標(biāo)原點(diǎn)O的距離都不超過(guò)2;③曲線(xiàn)C圍成區(qū)域的面積大于;④方程表示的曲線(xiàn)C在第二象限和第四象限其中正確結(jié)論的序號(hào)是()A.①③ B.②④ C.①②③ D.②③④6.已知m,n是兩條不同的直線(xiàn),,是兩個(gè)不同的平面,給出四個(gè)命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④7.已知圓錐的高為3,底面半徑為,若該圓錐的頂點(diǎn)與底面的圓周都在同一個(gè)球面上,則這個(gè)球的體積與圓錐的體積的比值為()A. B. C. D.8.閱讀下面的程序框圖,運(yùn)行相應(yīng)的程序,程序運(yùn)行輸出的結(jié)果是()A.1.1 B.1 C.2.9 D.2.89.若集合,,則()A. B. C. D.10.以下四個(gè)命題:①兩個(gè)隨機(jī)變量的線(xiàn)性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近1;②在回歸分析中,可用相關(guān)指數(shù)的值判斷擬合效果,越小,模型的擬合效果越好;③若數(shù)據(jù)的方差為1,則的方差為4;④已知一組具有線(xiàn)性相關(guān)關(guān)系的數(shù)據(jù),其線(xiàn)性回歸方程,則“滿(mǎn)足線(xiàn)性回歸方程”是“,”的充要條件;其中真命題的個(gè)數(shù)為()A.4 B.3 C.2 D.111.黨的十九大報(bào)告明確提出:在共享經(jīng)濟(jì)等領(lǐng)域培育增長(zhǎng)點(diǎn)、形成新動(dòng)能.共享經(jīng)濟(jì)是公眾將閑置資源通過(guò)社會(huì)化平臺(tái)與他人共享,進(jìn)而獲得收入的經(jīng)濟(jì)現(xiàn)象.為考察共享經(jīng)濟(jì)對(duì)企業(yè)經(jīng)濟(jì)活躍度的影響,在四個(gè)不同的企業(yè)各取兩個(gè)部門(mén)進(jìn)行共享經(jīng)濟(jì)對(duì)比試驗(yàn),根據(jù)四個(gè)企業(yè)得到的試驗(yàn)數(shù)據(jù)畫(huà)出如下四個(gè)等高條形圖,最能體現(xiàn)共享經(jīng)濟(jì)對(duì)該部門(mén)的發(fā)展有顯著效果的圖形是()A. B.C. D.12.已知拋物線(xiàn):的焦點(diǎn)為,準(zhǔn)線(xiàn)為,是上一點(diǎn),直線(xiàn)與拋物線(xiàn)交于,兩點(diǎn),若,則為()A. B.40 C.16 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則的值為_(kāi)___14.已知向量,滿(mǎn)足,,,則向量在的夾角為_(kāi)_____.15.已知實(shí)數(shù),且由的最大值是_________16.已知實(shí)數(shù)滿(mǎn)足,則的最小值是______________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,已知平面與直線(xiàn)均垂直于所在平面,且.(1)求證:平面;(2)若,求與平面所成角的正弦值.18.(12分)如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.19.(12分)對(duì)于正整數(shù),如果個(gè)整數(shù)滿(mǎn)足,且,則稱(chēng)數(shù)組為的一個(gè)“正整數(shù)分拆”.記均為偶數(shù)的“正整數(shù)分拆”的個(gè)數(shù)為均為奇數(shù)的“正整數(shù)分拆”的個(gè)數(shù)為.(Ⅰ)寫(xiě)出整數(shù)4的所有“正整數(shù)分拆”;(Ⅱ)對(duì)于給定的整數(shù),設(shè)是的一個(gè)“正整數(shù)分拆”,且,求的最大值;(Ⅲ)對(duì)所有的正整數(shù),證明:;并求出使得等號(hào)成立的的值.(注:對(duì)于的兩個(gè)“正整數(shù)分拆”與,當(dāng)且僅當(dāng)且時(shí),稱(chēng)這兩個(gè)“正整數(shù)分拆”是相同的.)20.(12分)已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù))(1)若在R上單調(diào)遞增,求正數(shù)a的取值范圍;(2)若f(x)在處導(dǎo)數(shù)相等,證明:;(3)當(dāng)時(shí),證明:對(duì)于任意,若,則直線(xiàn)與曲線(xiàn)有唯一公共點(diǎn)(注:當(dāng)時(shí),直線(xiàn)與曲線(xiàn)的交點(diǎn)在y軸兩側(cè)).21.(12分)如圖,已知在三棱臺(tái)中,,,.(1)求證:;(2)過(guò)的平面分別交,于點(diǎn),,且分割三棱臺(tái)所得兩部分幾何體的體積比為,幾何體為棱柱,求的長(zhǎng).提示:臺(tái)體的體積公式(,分別為棱臺(tái)的上、下底面面積,為棱臺(tái)的高).22.(10分)如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點(diǎn).(Ⅰ)求證:平面平面;(ⅠⅠ)求直線(xiàn)與平面所成的角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】試題分析:因?yàn)閍n+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點(diǎn):數(shù)列的通項(xiàng)公式.2、A【解析】

設(shè)所求切線(xiàn)的方程為,聯(lián)立,消去得出關(guān)于的方程,可得出,求出的值,進(jìn)而求得切點(diǎn)的坐標(biāo),利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設(shè)所求切線(xiàn)的方程為,則,聯(lián)立,消去得①,由,解得,方程①為,解得,則點(diǎn),所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.【點(diǎn)睛】本題考查定積分的計(jì)算以及幾何概型,同時(shí)也涉及了二次函數(shù)的切線(xiàn)方程的求解,考查計(jì)算能力,屬于中等題.3、D【解析】

由得,分別以為橫縱坐標(biāo)建立如圖所示平面直角坐標(biāo)系,由圖可知,.4、B【解析】

由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當(dāng);當(dāng)綜上:.故選:B【點(diǎn)睛】本題考查了條件分支的程序框圖,考查了學(xué)生邏輯推理,分類(lèi)討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.5、B【解析】

利用基本不等式得,可判斷②;和聯(lián)立解得可判斷①③;由圖可判斷④.【詳解】,解得(當(dāng)且僅當(dāng)時(shí)取等號(hào)),則②正確;將和聯(lián)立,解得,即圓與曲線(xiàn)C相切于點(diǎn),,,,則①和③都錯(cuò)誤;由,得④正確.故選:B.【點(diǎn)睛】本題考查曲線(xiàn)與方程的應(yīng)用,根據(jù)方程,判斷曲線(xiàn)的性質(zhì)及結(jié)論,考查學(xué)生邏輯推理能力,是一道有一定難度的題.6、D【解析】

根據(jù)面面垂直的判定定理可判斷①;根據(jù)空間面面平行的判定定理可判斷②;根據(jù)線(xiàn)面平行的判定定理可判斷③;根據(jù)面面垂直的判定定理可判斷④.【詳解】對(duì)于①,若,,,,兩平面相交,但不一定垂直,故①錯(cuò)誤;對(duì)于②,若,,則,故②正確;對(duì)于③,若,,,當(dāng),則與不平行,故③錯(cuò)誤;對(duì)于④,若,,,則,故④正確;故選:D【點(diǎn)睛】本題考查了線(xiàn)面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎(chǔ)題.7、B【解析】

計(jì)算求半徑為,再計(jì)算球體積和圓錐體積,計(jì)算得到答案.【詳解】如圖所示:設(shè)球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【點(diǎn)睛】本題考查了圓錐,球體積,圓錐的外接球問(wèn)題,意在考查學(xué)生的計(jì)算能力和空間想象能力.8、C【解析】

根據(jù)程序框圖的模擬過(guò)程,寫(xiě)出每執(zhí)行一次的運(yùn)行結(jié)果,屬于基礎(chǔ)題.【詳解】初始值,第一次循環(huán):,;第二次循環(huán):,;第三次循環(huán):,;第四次循環(huán):,;第五次循環(huán):,;第六次循環(huán):,;第七次循環(huán):,;第九次循環(huán):,;第十次循環(huán):,;所以輸出.故選:C【點(diǎn)睛】本題考查了循環(huán)結(jié)構(gòu)的程序框圖的讀取以及運(yùn)行結(jié)果,屬于基礎(chǔ)題.9、A【解析】

用轉(zhuǎn)化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點(diǎn)睛】本題考查了并集及其運(yùn)算,分式不等式的解法,熟練掌握并集的定義是解本題的關(guān)鍵.屬于基礎(chǔ)題.10、C【解析】

①根據(jù)線(xiàn)性相關(guān)性與r的關(guān)系進(jìn)行判斷,

②根據(jù)相關(guān)指數(shù)的值的性質(zhì)進(jìn)行判斷,

③根據(jù)方差關(guān)系進(jìn)行判斷,

④根據(jù)點(diǎn)滿(mǎn)足回歸直線(xiàn)方程,但點(diǎn)不一定就是這一組數(shù)據(jù)的中心點(diǎn),而回歸直線(xiàn)必過(guò)樣本中心點(diǎn),可進(jìn)行判斷.【詳解】①若兩個(gè)隨機(jī)變量的線(xiàn)性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的絕對(duì)值越接近于1,故①正確;

②用相關(guān)指數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好,故②錯(cuò)誤;

③若統(tǒng)計(jì)數(shù)據(jù)的方差為1,則的方差為,故③正確;

④因?yàn)辄c(diǎn)滿(mǎn)足回歸直線(xiàn)方程,但點(diǎn)不一定就是這一組數(shù)據(jù)的中心點(diǎn),即,不一定成立,而回歸直線(xiàn)必過(guò)樣本中心點(diǎn),所以當(dāng),時(shí),點(diǎn)必滿(mǎn)足線(xiàn)性回歸方程;因此“滿(mǎn)足線(xiàn)性回歸方程”是“,”必要不充分條件.故④錯(cuò)誤;

所以正確的命題有①③.

故選:C.【點(diǎn)睛】本題考查兩個(gè)隨機(jī)變量的相關(guān)性,擬合性檢驗(yàn),兩個(gè)線(xiàn)性相關(guān)的變量間的方差的關(guān)系,以及兩個(gè)變量的線(xiàn)性回歸方程,注意理解每一個(gè)量的定義,屬于基礎(chǔ)題.11、D【解析】根據(jù)四個(gè)列聯(lián)表中的等高條形圖可知,圖中D中共享與不共享的企業(yè)經(jīng)濟(jì)活躍度的差異最大,它最能體現(xiàn)共享經(jīng)濟(jì)對(duì)該部門(mén)的發(fā)展有顯著效果,故選D.12、D【解析】

如圖所示,過(guò)分別作于,于,利用和,聯(lián)立方程組計(jì)算得到答案.【詳解】如圖所示:過(guò)分別作于,于.,則,根據(jù)得到:,即,根據(jù)得到:,即,解得,,故.故選:.【點(diǎn)睛】本題考查了拋物線(xiàn)中弦長(zhǎng)問(wèn)題,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】

根據(jù)的正負(fù)值,代入對(duì)應(yīng)的函數(shù)解析式求解即可.【詳解】解:.故答案為:.【點(diǎn)睛】本題考查分段函數(shù)函數(shù)值的求解,是基礎(chǔ)題.14、【解析】

把平方利用數(shù)量積的運(yùn)算化簡(jiǎn)即得解.【詳解】因?yàn)?,,,所以,∴,∴,因?yàn)樗?故答案為:【點(diǎn)睛】本題主要考查平面向量的數(shù)量積的運(yùn)算法則,考查向量的夾角的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.15、【解析】

將其轉(zhuǎn)化為幾何意義,然后根據(jù)最值的條件求出最大值【詳解】由化簡(jiǎn)得,又實(shí)數(shù),圖形為圓,如圖:,可得,則由幾何意義得,則,為求最大值則當(dāng)過(guò)點(diǎn)或點(diǎn)時(shí)取最小值,可得所以的最大值是【點(diǎn)睛】本題考查了二元最值問(wèn)題,將其轉(zhuǎn)化為幾何意義,得到圓的方程及斜率問(wèn)題,對(duì)要求的二元二次表達(dá)式進(jìn)行化簡(jiǎn),然后求出最值問(wèn)題,本題有一定難度。16、【解析】

先畫(huà)出不等式組對(duì)應(yīng)的可行域,再利用數(shù)形結(jié)合分析解答得解.【詳解】畫(huà)出不等式組表示的可行域如圖陰影區(qū)域所示.由題得y=-3x+z,它表示斜率為-3,縱截距為z的直線(xiàn)系,平移直線(xiàn),易知當(dāng)直線(xiàn)經(jīng)過(guò)點(diǎn)時(shí),直線(xiàn)的縱截距最小,目標(biāo)函數(shù)取得最小值,且.故答案為:-8【點(diǎn)睛】本題主要考查線(xiàn)性規(guī)劃問(wèn)題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和數(shù)形結(jié)合分析能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)【解析】

(Ⅰ)證明:過(guò)點(diǎn)作于點(diǎn),∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴點(diǎn)是的中點(diǎn),連結(jié),則∴平面∴∥,∴四邊形是矩形設(shè),得:,又∵,∴,從而,過(guò)作于點(diǎn),則∴是與平面所成角∴,∴與平面所成角的正弦值為考點(diǎn):面面垂直的性質(zhì)定理;線(xiàn)面平行的判定定理;線(xiàn)面垂直的性質(zhì)定理;直線(xiàn)與平面所成的角.點(diǎn)評(píng):本題主要考查了線(xiàn)面平行的證明和直線(xiàn)與平面所成的角,屬立體幾何中的??碱}型,較難.本題也可以用向量法來(lái)做:用向量法解題的關(guān)鍵是;首先正確的建立空間直角坐標(biāo)系,正確求解平面的一個(gè)法向量.注意計(jì)算要仔細(xì)、認(rèn)真.≌18、(1)見(jiàn)解析(2)見(jiàn)解析【解析】試題分析:(1)先由平面幾何知識(shí)證明,再由線(xiàn)面平行判定定理得結(jié)論;(2)先由面面垂直性質(zhì)定理得平面,則,再由AB⊥AD及線(xiàn)面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.試題解析:證明:(1)在平面內(nèi),因?yàn)锳B⊥AD,,所以.又因?yàn)槠矫鍭BC,平面ABC,所以EF∥平面ABC.(2)因?yàn)槠矫鍭BD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因?yàn)槠矫妫?又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因?yàn)锳C平面ABC,所以AD⊥AC.點(diǎn)睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見(jiàn)類(lèi)型:(1)證明線(xiàn)面、面面平行,需轉(zhuǎn)化為證明線(xiàn)線(xiàn)平行;(2)證明線(xiàn)面垂直,需轉(zhuǎn)化為證明線(xiàn)線(xiàn)垂直;(3)證明線(xiàn)線(xiàn)垂直,需轉(zhuǎn)化為證明線(xiàn)面垂直.19、(Ⅰ),,,,;(Ⅱ)為偶數(shù)時(shí),,為奇數(shù)時(shí),;(Ⅲ)證明見(jiàn)解析,,【解析】

(Ⅰ)根據(jù)題意直接寫(xiě)出答案.(Ⅱ)討論當(dāng)為偶數(shù)時(shí),最大為,當(dāng)為奇數(shù)時(shí),最大為,得到答案.(Ⅲ)討論當(dāng)為奇數(shù)時(shí),,至少存在一個(gè)全為1的拆分,故,當(dāng)為偶數(shù)時(shí),根據(jù)對(duì)應(yīng)關(guān)系得到,再計(jì)算,,得到答案.【詳解】(Ⅰ)整數(shù)4的所有“正整數(shù)分拆”為:,,,,.(Ⅱ)當(dāng)為偶數(shù)時(shí),時(shí),最大為;當(dāng)為奇數(shù)時(shí),時(shí),最大為;綜上所述:為偶數(shù),最大為,為奇數(shù)時(shí),最大為.(Ⅲ)當(dāng)為奇數(shù)時(shí),,至少存在一個(gè)全為1的拆分,故;當(dāng)為偶數(shù)時(shí),設(shè)是每個(gè)數(shù)均為偶數(shù)的“正整數(shù)分拆”,則它至少對(duì)應(yīng)了和的均為奇數(shù)的“正整數(shù)分拆”,故.綜上所述:.當(dāng)時(shí),偶數(shù)“正整數(shù)分拆”為,奇數(shù)“正整數(shù)分拆”為,;當(dāng)時(shí),偶數(shù)“正整數(shù)分拆”為,,奇數(shù)“正整數(shù)分拆”為,故;當(dāng)時(shí),對(duì)于偶數(shù)“正整數(shù)分拆”,除了各項(xiàng)不全為的奇數(shù)拆分外,至少多出一項(xiàng)各項(xiàng)均為的“正整數(shù)分拆”,故.綜上所述:使成立的為:或.【點(diǎn)睛】本土考查了數(shù)列的新定義問(wèn)題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.20、(1);(2)見(jiàn)解析;(3)見(jiàn)解析【解析】

(1)需滿(mǎn)足恒成立,只需即可;(2)根據(jù)的單調(diào)性,構(gòu)造新函數(shù),并令,根據(jù)的單調(diào)性即可得證;(3)將問(wèn)題轉(zhuǎn)化為證明有唯一實(shí)數(shù)解,對(duì)求導(dǎo),判斷其單調(diào)性,結(jié)合題目條件與不等式的放縮,即可得證.【詳解】;令,則恒成立;,;的取值范圍是;(2)證明:由(1)知,在上單調(diào)遞減,在上單調(diào)遞增;;令,;則;令,則;;;(3)證明:,,要證明有唯一實(shí)數(shù)解;當(dāng)時(shí),;當(dāng)時(shí),;即對(duì)于任意實(shí)數(shù),一定有解;;當(dāng)時(shí),有兩個(gè)極值點(diǎn);函數(shù)在,,上單調(diào)遞增,在上單調(diào)遞減;又;只需,在時(shí)恒成立;只需;令,其中一個(gè)正解是;,;單調(diào)遞增,,(1);;;綜上得證.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)證明不等式,考查了轉(zhuǎn)化思想、不等式的放縮,屬難題.21、(1)證明見(jiàn)解析;(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論