2024屆安徽省師大附中高三第二次調(diào)研數(shù)學(xué)試卷含解析_第1頁
2024屆安徽省師大附中高三第二次調(diào)研數(shù)學(xué)試卷含解析_第2頁
2024屆安徽省師大附中高三第二次調(diào)研數(shù)學(xué)試卷含解析_第3頁
2024屆安徽省師大附中高三第二次調(diào)研數(shù)學(xué)試卷含解析_第4頁
2024屆安徽省師大附中高三第二次調(diào)研數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆安徽省師大附中高三第二次調(diào)研數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.己知函數(shù)若函數(shù)的圖象上關(guān)于原點對稱的點有2對,則實數(shù)的取值范圍是()A. B. C. D.2.已知函數(shù),若函數(shù)的所有零點依次記為,且,則()A. B. C. D.3.已知函數(shù),則函數(shù)的零點所在區(qū)間為()A. B. C. D.4.已知為拋物線的焦點,點在上,若直線與的另一個交點為,則()A. B. C. D.5.設(shè)a=log73,,c=30.7,則a,b,c的大小關(guān)系是()A. B. C. D.6.設(shè),,則“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件7.下列命題為真命題的個數(shù)是()(其中,為無理數(shù))①;②;③.A.0 B.1 C.2 D.38.函數(shù)的圖象大致為()A. B.C. D.9.已知復(fù)數(shù)z1=3+4i,z2=a+i,且z1是實數(shù),則實數(shù)a等于()A. B. C.- D.-10.如圖所示,網(wǎng)絡(luò)紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.811.設(shè)全集,集合,則=()A. B. C. D.12.已知復(fù)數(shù)(為虛數(shù)單位,),則在復(fù)平面內(nèi)對應(yīng)的點所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.不等式對于定義域內(nèi)的任意恒成立,則的取值范圍為__________.14.設(shè)是定義在上的函數(shù),且,對任意,若經(jīng)過點的一次函數(shù)與軸的交點為,且互不相等,則稱為關(guān)于函數(shù)的平均數(shù),記為.當(dāng)_________時,為的幾何平均數(shù).(只需寫出一個符合要求的函數(shù)即可)15.的展開式中二項式系數(shù)最大的項的系數(shù)為_________(用數(shù)字作答).16.已知數(shù)列{an}的前n項和為Sn,向量(4,﹣n),(Sn,n+3).若⊥,則數(shù)列{}前2020項和為_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,且.(1)求的最小值;(2)證明:.18.(12分)已知橢圓的右頂點為,為上頂點,點為橢圓上一動點.(1)若,求直線與軸的交點坐標(biāo);(2)設(shè)為橢圓的右焦點,過點與軸垂直的直線為,的中點為,過點作直線的垂線,垂足為,求證:直線與直線的交點在橢圓上.19.(12分)已知半徑為5的圓的圓心在x軸上,圓心的橫坐標(biāo)是整數(shù),且與直線4x+3y﹣29=0相切.(1)求圓的方程;(2)設(shè)直線ax﹣y+5=0(a>0)與圓相交于A,B兩點,求實數(shù)a的取值范圍;(3)在(2)的條件下,是否存在實數(shù)a,使得弦AB的垂直平分線l過點P(﹣2,4),若存在,求出實數(shù)a的值;若不存在,請說明理由.20.(12分)已知函數(shù),其中.(1)①求函數(shù)的單調(diào)區(qū)間;②若滿足,且.求證:.(2)函數(shù).若對任意,都有,求的最大值.21.(12分)已知等差數(shù)列的前n項和為,,公差,、、成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列,的通項公式;(2)已知,求數(shù)列的前n項和.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸,建立極坐標(biāo)系.已知點的直角坐標(biāo)為,過的直線與曲線相交于,兩點.(1)若的斜率為2,求的極坐標(biāo)方程和曲線的普通方程;(2)求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

考慮當(dāng)時,有兩個不同的實數(shù)解,令,則有兩個不同的零點,利用導(dǎo)數(shù)和零點存在定理可得實數(shù)的取值范圍.【詳解】因為的圖象上關(guān)于原點對稱的點有2對,所以時,有兩個不同的實數(shù)解.令,則在有兩個不同的零點.又,當(dāng)時,,故在上為增函數(shù),在上至多一個零點,舍.當(dāng)時,若,則,在上為增函數(shù);若,則,在上為減函數(shù);故,因為有兩個不同的零點,所以,解得.又當(dāng)時,且,故在上存在一個零點.又,其中.令,則,當(dāng)時,,故為減函數(shù),所以即.因為,所以在上也存在一個零點.綜上,當(dāng)時,有兩個不同的零點.故選:B.【點睛】本題考查函數(shù)的零點,一般地,較為復(fù)雜的函數(shù)的零點,必須先利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再結(jié)合零點存在定理說明零點的存在性,本題屬于難題.2、C【解析】

令,求出在的對稱軸,由三角函數(shù)的對稱性可得,將式子相加并整理即可求得的值.【詳解】令,得,即對稱軸為.函數(shù)周期,令,可得.則函數(shù)在上有8條對稱軸.根據(jù)正弦函數(shù)的性質(zhì)可知,將以上各式相加得:故選:C.【點睛】本題考查了三角函數(shù)的對稱性,考查了三角函數(shù)的周期性,考查了等差數(shù)列求和.本題的難點是將所求的式子拆分為的形式.3、A【解析】

首先求得時,的取值范圍.然后求得時,的單調(diào)性和零點,令,根據(jù)“時,的取值范圍”得到,利用零點存在性定理,求得函數(shù)的零點所在區(qū)間.【詳解】當(dāng)時,.當(dāng)時,為增函數(shù),且,則是唯一零點.由于“當(dāng)時,.”,所以令,得,因為,,所以函數(shù)的零點所在區(qū)間為.故選:A【點睛】本小題主要考查分段函數(shù)的性質(zhì),考查符合函數(shù)零點,考查零點存在性定理,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.4、C【解析】

求得點坐標(biāo),由此求得直線的方程,聯(lián)立直線的方程和拋物線的方程,求得點坐標(biāo),進而求得【詳解】拋物線焦點為,令,,解得,不妨設(shè),則直線的方程為,由,解得,所以.故選:C【點睛】本小題主要考查拋物線的弦長的求法,屬于基礎(chǔ)題.5、D【解析】

,,得解.【詳解】,,,所以,故選D【點睛】比較不同數(shù)的大小,找中間量作比較是一種常見的方法.6、A【解析】

根據(jù)對數(shù)的運算分別從充分性和必要性去證明即可.【詳解】若,,則,可得;若,可得,無法得到,所以“”是“”的充分而不必要條件.所以本題答案為A.【點睛】本題考查充要條件的定義,判斷充要條件的方法是:①若為真命題且為假命題,則命題p是命題q的充分不必要條件;②若為假命題且為真命題,則命題p是命題q的必要不充分條件;③若為真命題且為真命題,則命題p是命題q的充要條件;④若為假命題且為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.7、C【解析】

對于①中,根據(jù)指數(shù)冪的運算性質(zhì)和不等式的性質(zhì),可判定值正確的;對于②中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)得到函數(shù)為單調(diào)遞增函數(shù),進而得到,即可判定是錯誤的;對于③中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的最大值為,進而得到,即可判定是正確的.【詳解】由題意,對于①中,由,可得,根據(jù)不等式的性質(zhì),可得成立,所以是正確的;對于②中,設(shè)函數(shù),則,所以函數(shù)為單調(diào)遞增函數(shù),因為,則又由,所以,即,所以②不正確;對于③中,設(shè)函數(shù),則,當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減,所以當(dāng)時,函數(shù)取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點睛】本題主要考查了不等式的性質(zhì),以及導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,其中解答中根據(jù)題意,合理構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與運算能力,屬于中檔試題.8、A【解析】

根據(jù)函數(shù)的奇偶性和單調(diào)性,排除錯誤選項,從而得出正確選項.【詳解】因為,所以是偶函數(shù),排除C和D.當(dāng)時,,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點睛】本小題主要考查函數(shù)圖像的識別,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值,屬于中檔題.9、A【解析】分析:計算,由z1,是實數(shù)得,從而得解.詳解:復(fù)數(shù)z1=3+4i,z2=a+i,.所以z1,是實數(shù),所以,即.故選A.點睛:本題主要考查了復(fù)數(shù)共軛的概念,屬于基礎(chǔ)題.10、A【解析】

先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.11、A【解析】

先求得全集包含的元素,由此求得集合的補集.【詳解】由解得,故,所以,故選A.【點睛】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎(chǔ)題.12、B【解析】

分別比較復(fù)數(shù)的實部、虛部與0的大小關(guān)系,可判斷出在復(fù)平面內(nèi)對應(yīng)的點所在的象限.【詳解】因為時,所以,,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于第二象限.故選:B.【點睛】本題考查復(fù)數(shù)的幾何意義,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)題意,分離參數(shù),轉(zhuǎn)化為只對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,利用放縮法,得出,化簡后得出,即可得出的取值范圍.【詳解】解:已知對于定義域內(nèi)的任意恒成立,即對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,,,當(dāng)時取等號,由可知,,當(dāng)時取等號,,當(dāng)有解時,令,則,在上單調(diào)遞增,又,,使得,,則,所以的取值范圍為.故答案為:.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和最值,解決恒成立問題求參數(shù)值,涉及分離參數(shù)法和放縮法,考查轉(zhuǎn)化能力和計算能力.14、【解析】

由定義可知三點共線,即,通過整理可得,繼而可求出正確答案.【詳解】解:根據(jù)題意,由定義可知:三點共線.故可得:,即,整理得:,故可以選擇等.故答案為:.【點睛】本題考查了兩點的斜率公式,考查了推理能力,考查了運算能力.本題關(guān)鍵是分析出三點共線.15、5670【解析】

根據(jù)二項式展開的通項,可得二項式系數(shù)的最大項,可求得其系數(shù).【詳解】二項展開式一共有項,所以由二項式系數(shù)的性質(zhì)可知二項式系數(shù)最大的項為第5項,系數(shù)為.故答案為:5670【點睛】本題考查了二項式定理展開式的應(yīng)用,由通項公式求二項式系數(shù),屬于中檔題.16、【解析】

由已知可得?4Sn﹣n(n+3)=0,可得Sn,n=1時,a1=S1=1.當(dāng)n≥2時,an=Sn﹣Sn﹣1.可得:2().利用裂項求和方法即可得出.【詳解】∵⊥,∴?4Sn﹣n(n+3)=0,∴Sn,n=1時,a1=S1=1.當(dāng)n≥2時,an=Sn﹣Sn﹣1.,滿足上式,.∴2().∴數(shù)列{}前2020項和為2(1)=2(1).故答案為:.【點睛】本題考查了向量垂直與數(shù)量積的關(guān)系、數(shù)列遞推關(guān)系、裂項求和方法,考查了推理能力與計算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】

(1)利用基本不等式即可求得最小值;(2)關(guān)鍵是配湊系數(shù),進而利用基本不等式得證.【詳解】(1),當(dāng)且僅當(dāng)“”時取等號,故的最小值為;(2),當(dāng)且僅當(dāng)時取等號,此時.故.【點睛】本題主要考查基本不等式的運用,屬于基礎(chǔ)題.18、(1)(2)見解析【解析】

(1)直接求出直線方程,與橢圓方程聯(lián)立求出點坐標(biāo),從而可得直線方程,得其與軸交點坐標(biāo);(2)設(shè),則,求出直線和的方程,從而求得兩直線的交點坐標(biāo),證明此交點在橢圓上,即此點坐標(biāo)適合橢圓方程.代入驗證即可.注意分和說明.【詳解】解:本題考查直線與橢圓的位置關(guān)系的綜合,(1)由題知,,則.因為,所以,則直線的方程為,聯(lián)立,可得故.則,直線的方程為.令,得,故直線與軸的交點坐標(biāo)為.(2)證明:因為,,所以.設(shè)點,則.設(shè)當(dāng)時,設(shè),則,此時直線與軸垂直,其直線方程為,直線的方程為,即.在方程中,令,得,得交點為,顯然在橢圓上.同理當(dāng)時,交點也在橢圓上.當(dāng)時,可設(shè)直線的方程為,即.直線的方程為,聯(lián)立方程,消去得,化簡并解得.將代入中,化簡得.所以兩直線的交點為.因為,又因為,所以,則,所以點在橢圓上.綜上所述,直線與直線的交點在橢圓上.【點睛】本題考查直線與橢圓相交問題,解題方法是解析幾何的基本方程,求出直線方程,解方程組求出交點坐標(biāo),代入曲線方程驗證點在曲線.本題考查了學(xué)生的運算求解能力.19、(2)(x﹣2)2+y2=2.(2)().(3)存在,【解析】

(2)設(shè)圓心為M(m,0),根據(jù)相切得到,計算得到答案.(2)把直線ax﹣y+5=0,代入圓的方程,計算△=4(5a﹣2)2﹣4(a2+2)>0得到答案.(3)l的方程為,即x+ay+2﹣4a=0,過點M(2,0),計算得到答案.【詳解】(2)設(shè)圓心為M(m,0)(m∈Z).由于圓與直線4x+3y﹣29=0相切,且半徑為5,所以,即|4m﹣29|=2.因為m為整數(shù),故m=2.故所求圓的方程為(x﹣2)2+y2=2.(2)把直線ax﹣y+5=0,即y=ax+5,代入圓的方程,消去y,整理得(a2+2)x2+2(5a﹣2)x+2=0,由于直線ax﹣y+5=0交圓于A,B兩點,故△=4(5a﹣2)2﹣4(a2+2)>0,即22a2﹣5a>0,由于a>0,解得a,所以實數(shù)a的取值范圍是().(3)設(shè)符合條件的實數(shù)a存在,則直線l的斜率為,l的方程為,即x+ay+2﹣4a=0,由于l垂直平分弦AB,故圓心M(2,0)必在l上,所以2+0+2﹣4a=0,解得.由于,故存在實數(shù)使得過點P(﹣2,4)的直線l垂直平分弦AB.【點睛】本題考查了直線和圓的位置關(guān)系,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.20、(1)①單調(diào)遞增區(qū)間,,單調(diào)遞減區(qū)間;②詳見解析;(2).【解析】

(1)①求導(dǎo)可得,再分別求解與的解集,結(jié)合定義域分析函數(shù)的單調(diào)區(qū)間即可.②根據(jù)(1)中的結(jié)論,求出的表達式,再分與兩種情況,結(jié)合函數(shù)的單調(diào)性分析的范圍即可.(2)求導(dǎo)分析的單調(diào)性,再結(jié)合單調(diào)性,設(shè)去絕對值化簡可得,再構(gòu)造函數(shù),,根據(jù)函數(shù)的單調(diào)性與恒成立問題可知,再換元表達求解最大值即可.【詳解】解:,由可得或,由可得,故函數(shù)的單調(diào)遞增區(qū)間,,單調(diào)遞減區(qū)間;,或,若,因為,故,,由知在上單調(diào)遞增,,若由可得x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論