2024步步高考二輪數(shù)學(xué)新教材講義專題六 第4講 母題突破1 范圍、最值問題1_第1頁(yè)
2024步步高考二輪數(shù)學(xué)新教材講義專題六 第4講 母題突破1 范圍、最值問題1_第2頁(yè)
2024步步高考二輪數(shù)學(xué)新教材講義專題六 第4講 母題突破1 范圍、最值問題1_第3頁(yè)
2024步步高考二輪數(shù)學(xué)新教材講義專題六 第4講 母題突破1 范圍、最值問題1_第4頁(yè)
2024步步高考二輪數(shù)學(xué)新教材講義專題六 第4講 母題突破1 范圍、最值問題1_第5頁(yè)
已閱讀5頁(yè),還剩45頁(yè)未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024步步高考二輪數(shù)學(xué)新教材講義第4講圓錐曲線的綜合問題[考情分析]1.圓錐曲線的綜合問題是高考考查的重點(diǎn)內(nèi)容,常見的熱點(diǎn)題型有范圍、最值問題,定點(diǎn)、定直線、定值問題及探索性問題.2.以解答題的形式壓軸出現(xiàn),難度較大.母題突破1范圍、最值問題母題(2023·全國(guó)甲卷)已知直線x-2y+1=0與拋物線C:y2=2px(p>0)交于A,B兩點(diǎn),|AB|=4eq\r(15).(1)求p;(2)設(shè)F為C的焦點(diǎn),M,N為C上兩點(diǎn),eq\o(FM,\s\up6(→))·eq\o(FN,\s\up6(→))=0,求△MFN面積的最小值.思路分析?聯(lián)立方程利用弦長(zhǎng)求p?設(shè)直線MN:x=my+n和點(diǎn)M,N的坐標(biāo)?利用eq\o(FM,\s\up6(→))·eq\o(FN,\s\up6(→))=0,得m,n的關(guān)系?寫出S△MFN的面積?利用函數(shù)性質(zhì)求S△MFN面積的最小值________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子題1](2023·武漢模擬)已知橢圓C:eq\f(x2,4)+y2=1,橢圓C的右頂點(diǎn)為A,若點(diǎn)P,Q在橢圓C上,且滿足直線AP與AQ的斜率之積為eq\f(1,20),求△APQ面積的最大值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子題2](2023·深圳模擬)已知雙曲線C:x2-y2=1,設(shè)點(diǎn)A為C的左頂點(diǎn),若過點(diǎn)(3,0)的直線l與C的右支交于P,Q兩點(diǎn),且直線AP,AQ與圓O:x2+y2=1分別交于M,N兩點(diǎn),記四邊形PQNM的面積為S1,△AMN的面積為S2,求eq\f(S1,S2)的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________規(guī)律方法求解范圍、最值問題的常見方法(1)利用判別式來(lái)構(gòu)造不等關(guān)系.(2)利用已知參數(shù)的范圍,在兩個(gè)參數(shù)之間建立函數(shù)關(guān)系.(3)利用隱含或已知的不等關(guān)系建立不等式.(4)利用基本不等式.1.(2023·佛山模擬)在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),Meq\b\lc\(\rc\)(\a\vs4\al\co1(-1,0)),N(1,0),Q為線段MN上異于M,N的一動(dòng)點(diǎn),點(diǎn)P滿足eq\f(|PM|,|QM|)=eq\f(|PN|,|QN|)=2.(1)求點(diǎn)P的軌跡E的方程;(2)點(diǎn)A,C是曲線E上兩點(diǎn),且在x軸上方,滿足AM∥NC,求四邊形AMNC面積的最大值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.(2023·溫州模擬)已知拋物線C1:y2=4x-4與雙曲線C2:eq\f(x2,a2)-eq\f(y2,4-a2)=1(1<a<2)相交于A,B兩點(diǎn),F(xiàn)是C2的右焦點(diǎn),直線AF分別交C1,C2于C,D(不同于A,B點(diǎn))兩點(diǎn),直線BC,BD分別交x軸于P,Q兩點(diǎn).(1)設(shè)A(x1,y1),C(x2,y2),求證:y1y2是定值;(2)求eq\f(|FQ|,|FP|)的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________母題突破2定點(diǎn)(定直線)問題母題已知雙曲線C:eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)的離心率為eq\f(2\r(3),3),左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P的坐標(biāo)為(3,1),且eq\o(PF1,\s\up6(→))·eq\o(PF2,\s\up6(→))=6.(1)求雙曲線C的方程;(2)過點(diǎn)P的動(dòng)直線l與C的左、右兩支分別交于A,B兩點(diǎn),若點(diǎn)M在線段AB上,滿足eq\f(|AP|,|AM|)=eq\f(|BP|,|BM|),證明:點(diǎn)M在定直線上.思路分析?利用離心率和eq\o(PF1,\s\up6(→))·eq\o(PF2,\s\up6(→))=6求方程?設(shè)直線方程y-1=kx-3并聯(lián)立?利用比例關(guān)系eq\f(|AP|,|AM|)=eq\f(|BP|,|BM|)列式?將根與系數(shù)的關(guān)系代入化簡(jiǎn)?消去參數(shù)得點(diǎn)在定直線上________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子題1](2023·信陽(yáng)模擬)已知橢圓C:eq\f(x2,4)+eq\f(y2,2)=1的左、右頂點(diǎn)分別為A1,A2,過點(diǎn)D(1,0)的直線l與橢圓C交于異于A1,A2的M,N兩點(diǎn).若直線A1M與直線A2N交于點(diǎn)P,證明:點(diǎn)P在定直線上,并求出該定直線的方程.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子題2](2023·岳陽(yáng)模擬)已知雙曲線C:x2-eq\f(y2,3)=1,P為雙曲線的右頂點(diǎn),設(shè)直線l不經(jīng)過P點(diǎn)且與C相交于A,B兩點(diǎn),若直線PA與直線PB的斜率之和為-1.證明:直線l恒過定點(diǎn).________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________規(guī)律方法動(dòng)線過定點(diǎn)問題的兩大類型及解法(1)動(dòng)直線l過定點(diǎn)問題,解法:設(shè)動(dòng)直線方程(斜率存在)為y=kx+t,由題設(shè)條件將t用k表示為t=mk,得y=k(x+m),故動(dòng)直線過定點(diǎn)(-m,0).(2)動(dòng)曲線C過定點(diǎn)問題,解法:引入?yún)⒆兞拷⑶€C的方程,再根據(jù)其對(duì)參變量恒成立,令其系數(shù)等于零,得出定點(diǎn).1.(2023·襄陽(yáng)模擬)過拋物線x2=2py(p>0)內(nèi)部一點(diǎn)P(m,n)作任意兩條直線AB,CD,如圖所示,連接AC,BD并延長(zhǎng)交于點(diǎn)Q,當(dāng)P為焦點(diǎn)并且AB⊥CD時(shí),四邊形ACBD面積的最小值為32.(1)求拋物線的方程;(2)若點(diǎn)P(1,1),證明:點(diǎn)Q在定直線上運(yùn)動(dòng),并求出定直線方程.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.(2023·全國(guó)乙卷)已知橢圓C:eq\f(y2,a2)+eq\f(x2,b2)=1(a>b>0)的離心率是eq\f(\r(5),3),點(diǎn)A(-2,0)在C上.(1)求C的方程;________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)過點(diǎn)(-2,3)的直線交C于P,Q兩點(diǎn),直線AP,AQ與y軸的交點(diǎn)分別為M,N,證明:線段MN的中點(diǎn)為定點(diǎn).________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________母題突破3定值問題母題(2023·黃山模擬)已知橢圓E:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)過點(diǎn)Meq\b\lc\(\rc\)(\a\vs4\al\co1(\r(3),\f(1,2))),點(diǎn)A為下頂點(diǎn),且AM的斜率為eq\f(\r(3),2).(1)求橢圓E的方程;(2)如圖,過點(diǎn)B(0,4)作一條與y軸不重合的直線,該直線交橢圓E于C,D兩點(diǎn),直線AD,AC分別交x軸于H,G兩點(diǎn),O為坐標(biāo)原點(diǎn).證明:|OH||OG|為定值,并求出該定值.思路分析?結(jié)合點(diǎn)的坐標(biāo)和AM的斜率列方程組?設(shè)直線BC的方程并與橢圓的方程聯(lián)立?得到x1+x2,x1x2?寫出直線AD,AC的方程并求出H,G的橫坐標(biāo)?化簡(jiǎn)運(yùn)算|OH||OG|________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子題1](2023·西安模擬)如圖,在平面直角坐標(biāo)系中,橢圓E:eq\f(x2,8)+eq\f(y2,4)=1,A,B分別為橢圓E的左、右頂點(diǎn).已知圖中四邊形ABCD是矩形,且|BC|=4,點(diǎn)M,N分別在邊BC,CD上,AM與BN相交于第一象限內(nèi)的點(diǎn)P.若點(diǎn)P在橢圓E上,證明:eq\f(|BM|,|CN|)為定值,并求出該定值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子題2](2023·衡水質(zhì)檢)已知E(2,2)是拋物線C:y2=2x上一點(diǎn),經(jīng)過點(diǎn)(2,0)的直線l與拋物線C交于A,B兩點(diǎn)(不同于點(diǎn)E),直線EA,EB分別交直線x=-2于點(diǎn)M,N.已知O為原點(diǎn),求證:∠MON為定值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________規(guī)律方法求解定值問題的兩大途徑(1)由特例得出一個(gè)值(此值一般就是定值)→證明定值:將問題轉(zhuǎn)化為證明待證式與參數(shù)(某些變量)無(wú)關(guān).(2)先將式子用動(dòng)點(diǎn)坐標(biāo)或動(dòng)線中的參數(shù)表示,再利用其滿足的約束條件使其絕對(duì)值相等的正負(fù)項(xiàng)抵消或分子、分母約分得定值.1.已知拋物線C:y2=2px(p>0),F(xiàn)為其焦點(diǎn),若圓E:(x-1)2+y2=16與拋物線C交于A,B兩點(diǎn),且|AB|=4eq\r(3).(1)求拋物線C的方程;(2)若點(diǎn)P為圓E上任意一點(diǎn),且過點(diǎn)P可以作拋物線C的兩條切線PM,PN,切點(diǎn)分別為M,N.求證:|MF|·|NF|恒為定值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.(2023·滄州模擬)已知雙曲線C:eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)經(jīng)過點(diǎn)eq\b\lc\(\rc\)(\a\vs4\al\co1(3,\f(\r(6),2))),右焦點(diǎn)為F(c,0),且c2,a2,b2成等差數(shù)列.(1)求C的方程;________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)過F的直線與C的右支交于P,Q兩點(diǎn)(P在Q的上方),PQ的中點(diǎn)為M,M在直線l:x=2上的射影為N,O為坐標(biāo)原點(diǎn),設(shè)△POQ的面積為S,直線PN,QN的斜率分別為k1,k2,證明:eq\f(k1-k2,S)是定值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________母題突破4探究性問題母題(2023·廊坊質(zhì)檢)已知橢圓C:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)經(jīng)過點(diǎn)A(-2,0),且兩個(gè)焦點(diǎn)及短軸兩頂點(diǎn)圍成四邊形的面積為4.(1)求橢圓C的方程和離心率;(2)設(shè)P,Q為橢圓C上兩個(gè)不同的點(diǎn),直線AP與y軸交于點(diǎn)E,直線AQ與y軸交于點(diǎn)F,且P,O,Q三點(diǎn)共線.其中O為坐標(biāo)原點(diǎn).問:在x軸上是否存在點(diǎn)M,使得∠AME=∠EFM?若存在,求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.思路分析?代入點(diǎn),結(jié)合面積求方程和離心率?設(shè)點(diǎn)P,Q,表示出直線AP,AQ的方程?求出E,F(xiàn)的坐標(biāo)?由∠AME=∠EFM得eq\o(ME,\s\up6(→))·eq\o(MF,\s\up6(→))=0?利用向量運(yùn)算求點(diǎn)M的坐標(biāo)________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子題1](2023·西安模擬)已知橢圓C:eq\f(x2,4)+eq\f(y2,3)=1,過點(diǎn)Teq\b\lc\(\rc\)(\a\vs4\al\co1(\r(3),0))的直線交該橢圓于P,Q兩點(diǎn),若直線PQ與x軸不垂直,在x軸上是否存在定點(diǎn)S(s,0),使得∠PST=∠QST恒成立?若存在,求出s的值;若不存在,請(qǐng)說(shuō)明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子題2]已知雙曲線C:eq\f(y2,a2)-eq\f(x2,b2)=1(a>0,b>0),直線l在x軸上方與x軸平行,交雙曲線C于A,B兩點(diǎn),直線l交y軸于點(diǎn)D.當(dāng)l經(jīng)過C的焦點(diǎn)時(shí),點(diǎn)A的坐標(biāo)為(6,4).(1)求C的方程;(2)設(shè)OD的中點(diǎn)為M,是否存在定直線l,使得經(jīng)過M的直線與C交于P,Q兩點(diǎn),與線段AB交于點(diǎn)N(N,D不重合),eq\o(PM,\s\up6(→))=λeq\o(PN,\s\up6(→)),eq\o(MQ,\s\up6(→))=λeq\o(QN,\s\up6(→))均成立?若存在,求出l的方程;若不存在,請(qǐng)說(shuō)明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________規(guī)律方法探索性問題的求解策略(1)若給出問題的一些特殊關(guān)系,要探索一般規(guī)律,并能證明所得規(guī)律的正確性,通常要對(duì)已知關(guān)系進(jìn)行觀察、比較、分析,然后概括一般規(guī)律.(2)若只給出條件,求“不存在”“是否存在”等語(yǔ)句表述問題時(shí),一般先對(duì)結(jié)論給出肯定的假設(shè),然后由假設(shè)出發(fā),結(jié)合已知條件進(jìn)行推理,從而得出結(jié)論.1.已知拋物線C:x2=2py(p>0),點(diǎn)P(2,8)在拋物線上,直線y=kx+2交C于A,B兩點(diǎn),M是線段AB的中點(diǎn),過M作x軸的垂線交C于點(diǎn)N.(1)求點(diǎn)P到拋物線焦點(diǎn)的距離;(2)是否存在實(shí)數(shù)k使得eq\o(NA,\s\up6(→))·eq\o(NB,\s\up6(→))=0,若存在,求k的值;若不存在,請(qǐng)說(shuō)明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.(2023·池州模擬)如圖,點(diǎn)A為橢圓E:eq\f(x2,4)+y2=1的上頂點(diǎn),圓C:x2+y2=1,過坐標(biāo)原點(diǎn)O的直線l交橢圓E于M,N兩點(diǎn).(1)求直線AM,AN的斜率之積;(2)設(shè)直線AM:y=kx+1(k≠0),AN與圓C分別交于點(diǎn)P,Q,記直線MN,PQ的斜率分別為k1,k2,探究是否存在實(shí)數(shù)λ,使得k1=λk2?若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________規(guī)范答題6解析幾何(12分)(2023·新高考全國(guó)Ⅰ)在直角坐標(biāo)系Oxy中,點(diǎn)P到x軸的距離等于點(diǎn)P到點(diǎn)eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,2)))的距離,記動(dòng)點(diǎn)P的軌跡為W.(1)求W的方程;[切入點(diǎn):直接法求軌跡方程](2)已知矩形ABCD有三個(gè)頂點(diǎn)在W上,證明:矩形ABCD的周長(zhǎng)大于3eq\r(3).[關(guān)鍵點(diǎn):對(duì)周長(zhǎng)放縮](1)解設(shè)P(x,y),則|y|=eq\r(x2+\b\lc\(\rc\)(\a\vs4\al\co1(y-\f(1,2)))2),?兩邊同時(shí)平方化簡(jiǎn)得y=x2+eq\f(1,4),故W:y=x2+eq\f(1,4).(2分)(2)證明設(shè)矩形的三個(gè)頂點(diǎn)Aeq\b\lc\(\rc\)(\a\vs4\al\co1(a,a2+\f(1,4))),Beq\b\lc\(\rc\)(\a\vs4\al\co1(b,b2+\f(1,4))),Ceq\b\lc\(\rc\)(\a\vs4\al\co1(c,c2+\f(1,4)))在W上,且a<b<c,易知矩形四條邊所在直線的斜率均存在,且不為0,則kAB·kBC=-1,a+b<b+c,(4分)令kAB=eq\f(b2+\f(1,4)-\b\lc\(\rc\)(\a\vs4\al\co1(a2+\f(1,4))),b-a)=a+b=m<0,同理令kBC=b+c=n>0,且mn=-1,則m=-eq\f(1,n),?(6分)設(shè)矩形周長(zhǎng)為C,由對(duì)稱性不妨設(shè)|m|≥|n|,kBC-kAB=c-a=n-m=n+eq\f(1,n),則eq\f(1,2)C=|AB|+|BC|=(b-a)eq\r(1+m2)+(c-b)eq\r(1+n2)?≥(c-a)eq\r(1+n2)=eq\b\lc\(\rc\)(\a\vs4\al\co1(n+\f(1,n)))eq\r(1+n2),n>0,?(8分)易知eq\b\lc\(\rc\)(\a\vs4\al\co1(n+\f(1,n)))eq\r(1+n2)>0.則令f(x)=eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(1,x)))2(1+x2),x>0,?f′(x)=2eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(1,x)))2eq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(1,x))),令f′(x)=0,解得x=eq\f(\r(2),2),當(dāng)x∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(\r(2),2)))時(shí),f′(x)<0,此時(shí)f(x)單調(diào)遞減,當(dāng)x∈eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2),+∞))時(shí),f′(x)>0,此時(shí)f(x)單調(diào)遞增,則f(x)min=f

eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))=eq\f(27,4),?(10分)故eq\f(1,2)C≥eq\r(\f(27,4))=eq\f(3\r(3),2),即C≥3eq\r(3).當(dāng)C=3eq\r(3)時(shí),n=eq\f(\r(2),2),m=-eq\r(2),與當(dāng)(b-a)eq\r(1+m2)=(b-a)eq\r(1+n2),即m=n時(shí)等號(hào)成立,矛盾,?故C>3eq\r(3),得證.(12分)①處直接法求軌跡方程②處得到m,n之間的關(guān)系③處用弦長(zhǎng)公式表示周長(zhǎng)④處進(jìn)行周長(zhǎng)放縮⑤處建立函數(shù)⑥處利用導(dǎo)數(shù)求最值⑦處排除邊界值母題突破1范圍、最值問題母題解(1)設(shè)A(xA,yA),B(xB,yB),由eq\b\lc\{\rc\(\a\vs4\al\co1(x-2y+1=0,,y2=2px,))可得y2-4py+2p=0,所以yA+yB=4p,yAyB=2p,所以|AB|=eq\r(5)×eq\r(yA+yB2-4yAyB)=4eq\r(15),即2p2-p-6=0,解得p=2(負(fù)值舍去).(2)由(1)知y2=4x,所以焦點(diǎn)F(1,0),顯然直線MN的斜率不可能為零,設(shè)直線MN:x=my+n,M(x1,y1),N(x2,y2),由eq\b\lc\{\rc\(\a\vs4\al\co1(y2=4x,,x=my+n,))可得y2-4my-4n=0,所以y1+y2=4m,y1y2=-4n,Δ=16m2+16n>0?m2+n>0,因?yàn)閑q\o(FM,\s\up6(→))·eq\o(FN,\s\up6(→))=0,eq\o(FM,\s\up6(→))=(x1-1,y1),eq\o(FN,\s\up6(→))=(x2-1,y2),所以(x1-1)(x2-1)+y1y2=0,即(my1+n-1)(my2+n-1)+y1y2=0,即(m2+1)y1y2+m(n-1)(y1+y2)+(n-1)2=0,將y1+y2=4m,y1y2=-4n代入得,4m2=n2-6n+1,所以4(m2+n)=(n-1)2>0,所以n≠1,且n2-6n+1≥0,解得n≥3+2eq\r(2)或n≤3-2eq\r(2).設(shè)點(diǎn)F到直線MN的距離為d,所以d=eq\f(|n-1|,\r(1+m2)),|MN|=eq\r(1+m2)eq\r(y1+y22-4y1y2)=eq\r(1+m2)eq\r(16m2+16n)=eq\r(1+m2)eq\r(4n2-6n+1+16n)=2eq\r(1+m2)|n-1|,所以△MFN的面積S=eq\f(1,2)×|MN|×d=eq\f(1,2)×2eq\r(1+m2)·|n-1|×eq\f(|n-1|,\r(1+m2))=(n-1)2,而n≥3+2eq\r(2)或n≤3-2eq\r(2),所以當(dāng)n=3-2eq\r(2)時(shí),△MFN的面積最小,為Smin=(2-2eq\r(2))2=12-8eq\r(2)=4(3-2eq\r(2)).[子題1]解易知直線AP與AQ的斜率同號(hào),所以直線PQ不垂直于x軸,故可設(shè)直線PQ:y=kx+m,P(x1,y1),Q(x2,y2),由eq\b\lc\{\rc\(\a\vs4\al\co1(\f(x2,4)+y2=1,,y=kx+m,))可得(1+4k2)x2+8mkx+4m2-4=0,所以x1+x2=eq\f(-8mk,1+4k2),x1x2=eq\f(4m2-4,1+4k2),Δ=16(4k2+1-m2)>0,即4k2+1>m2,而kAPkAQ=eq\f(1,20),A(2,0),所以eq\f(y1,x1-2)·eq\f(y2,x2-2)=eq\f(1,20),化簡(jiǎn)可得20(kx1+m)(kx2+m)=(x1-2)(x2-2),即20k2x1x2+20km(x1+x2)+20m2=x1x2-2(x1+x2)+4,20k2·eq\f(4m2-4,1+4k2)+20km·eq\f(-8mk,1+4k2)+20m2=eq\f(4m2-4,1+4k2)-2×eq\f(-8mk,1+4k2)+4,整理得6k2+mk-m2=0,所以m=-2k或m=3k,所以直線PQ:y=k(x-2)或y=k(x+3),因?yàn)橹本€PQ不經(jīng)過點(diǎn)A(2,0),所以直線PQ經(jīng)過定點(diǎn)(-3,0),即m=3k.所以直線PQ的方程為y=k(x+3),易知k≠0,設(shè)定點(diǎn)B(-3,0),S△APQ=eq\b\lc\|\rc\|(\a\vs4\al\co1(S△ABP-S△ABQ))=eq\f(1,2)|AB||y1-y2|=eq\f(5,2)|k|eq\b\lc\|\rc\|(\a\vs4\al\co1(x1-x2))=eq\f(5,2)|k|eq\r(x1+x22-4x1x2)=eq\f(5,2)|k|eq\r(\b\lc\(\rc\)(\a\vs4\al\co1(\f(-8mk,1+4k2)))2-4×\f(4m2-4,1+4k2))=eq\f(5,2)|k|·eq\f(\r(164k2+1-m2),1+4k2)=eq\f(10\r(\b\lc\(\rc\)(\a\vs4\al\co1(1-5k2))k2),1+4k2),因?yàn)棣?gt;0,且m=3k,所以1-5k2>0,所以0<k2<eq\f(1,5),設(shè)t=4k2+1∈eq\b\lc\(\rc\)(\a\vs4\al\co1(1,\f(9,5))),所以S△APQ=eq\f(5,2)eq\r(\f(-5t2+14t-9,t2))=eq\f(5,2)eq\r(-9\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,t)-\f(7,9)))2+\f(4,9))≤eq\f(5,3),當(dāng)且僅當(dāng)t=eq\f(9,7),即k2=eq\f(1,14)時(shí)取等號(hào),即△APQ面積的最大值為eq\f(5,3).[子題2]解如圖所示,設(shè)直線lPQ的方程為x=ty+3,P(x1,y1),Q(x2,y2),由eq\b\lc\{\rc\(\a\vs4\al\co1(x=ty+3,,x2-y2=1,))得(t2-1)y2+6ty+8=0,因?yàn)橹本€l與雙曲線C的右支交于兩點(diǎn),所以eq\b\lc\{\rc\(\a\vs4\al\co1(t2-1≠0,,Δ=6t2-32t2-1>0,,y1y2=\f(8,t2-1)<0,))解得-1<t<1,y1+y2=eq\f(-6t,t2-1),y1y2=eq\f(8,t2-1),所以kAP·kAQ=eq\f(y1,x1+1)·eq\f(y2,x2+1)=eq\f(y1y2,\b\lc\(\rc\)(\a\vs4\al\co1(ty1+4))\b\lc\(\rc\)(\a\vs4\al\co1(ty2+4)))=eq\f(y1y2,t2y1y2+4ty1+y2+16)=eq\f(\f(8,t2-1),t2·\f(8,t2-1)+4t·\f(-6t,t2-1)+16)=eq\f(8,8t2-24t2+16t2-16)=-eq\f(1,2),設(shè)AP:x=m1y-1,AQ:x=m2y-1,且|m1|>1,|m2|>1,所以eq\f(1,m1)·eq\f(1,m2)=-eq\f(1,2),即m1·m2=-2,所以|m1|·|m2|=2,又因?yàn)閨m2|=eq\f(2,|m1|)>1,所以1<|m1|<2,由eq\b\lc\{\rc\(\a\vs4\al\co1(x=m1y-1,,x2-y2=1,))得(meq\o\al(2,1)-1)y2-2m1y=0,所以yP=eq\f(2m1,m\o\al(2,1)-1),同理可得yQ=eq\f(2m2,m\o\al(2,2)-1),由eq\b\lc\{\rc\(\a\vs4\al\co1(x=m1y-1,,x2+y2=1,))得(meq\o\al(2,1)+1)y2-2m1y=0,所以yM=eq\f(2m1,m\o\al(2,1)+1),同理可得yN=eq\f(2m2,m\o\al(2,2)+1),所以eq\f(S△APQ,S△AMN)=eq\f(\f(1,2)|AP||AQ|sin∠PAQ,\f(1,2)|AM||AN|sin∠MAN)=eq\f(|AP|,|AM|)·eq\f(|AQ|,|AN|)=eq\f(yP,yM)·eq\f(yQ,yN)=eq\f(\f(2m1,m\o\al(2,1)-1),\f(2m1,m\o\a

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論