版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
試卷第=page22頁,共=sectionpages22頁資料整理【淘寶店鋪:向陽百分百】試卷第=page11頁,共=sectionpages11頁資料整理【淘寶店鋪:向陽百分百】中考數(shù)學(xué)幾何專項練習(xí):最值問題之隱圓一、填空題1.如圖,四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0是四邊形SKIPIF1<0內(nèi)的一個動點,滿足SKIPIF1<0,則SKIPIF1<0面積的最小值為.【答案】SKIPIF1<0【分析】取SKIPIF1<0的中點SKIPIF1<0,連接SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0交SKIPIF1<0的延長線于點SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,則SKIPIF1<0,通過計算得出當(dāng)SKIPIF1<0三點共線時,SKIPIF1<0有最小值,求出最小值即可.【詳解】解:如圖,取SKIPIF1<0的中點SKIPIF1<0,連接SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0交SKIPIF1<0的延長線于點SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0為等腰梯形,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0點SKIPIF1<0在以點SKIPIF1<0為圓心,2為半徑的圓上,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0三點共線時,SKIPIF1<0有最小值SKIPIF1<0,SKIPIF1<0SKIPIF1<0面積的最小值為SKIPIF1<0.【點睛】本題考查了解直角三角形、隱圓、直角三角形的性質(zhì)等知識點,點SKIPIF1<0位置的確定是解題關(guān)鍵.2.如圖,點A,B的坐標(biāo)分別為SKIPIF1<0為坐標(biāo)平面內(nèi)一點,SKIPIF1<0,M為線段SKIPIF1<0的中點,連接SKIPIF1<0,當(dāng)SKIPIF1<0取最大值時,點M的坐標(biāo)為.【答案】SKIPIF1<0【分析】根據(jù)題意可知:點C在半徑為SKIPIF1<0的⊙B上.在x軸上取OD=OA=6,連接CD,易證明OM是△ACD的中位線,即得出OM=SKIPIF1<0CD,即當(dāng)OM最大時,CD最大,由D,B,C三點共線時,即當(dāng)C在DB的延長線上時,OM最大,根據(jù)勾股定理求出BD的長,從而可求出CD的長,最后即可求出OM的最大值.【詳解】解:如圖,∵點C為坐標(biāo)平面內(nèi)一點,SKIPIF1<0,∴C在⊙B上,且半徑為SKIPIF1<0,在x軸上取OD=OA=6,連接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位線,∴OM=SKIPIF1<0CD,∴即當(dāng)OM最大時,CD最大,而D,B,C三點共線時,即當(dāng)C在DB的延長線上時,OM最大,∵OB=OD=6,∠BOD=90°,∴BD=SKIPIF1<0,∴CD=SKIPIF1<0,且C(2,8),∴OM=SKIPIF1<0CDSKIPIF1<0,即OM的最大值為SKIPIF1<0,∵M(jìn)是AC的中點,則M(4,4),故答案為:(4,4).【點睛】本題考查坐標(biāo)和圖形,三角形的中位線定理,勾股定理等知識.確定OM為最大值時點C的位置是解題關(guān)鍵,也是難點.3.如圖,在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0、SKIPIF1<0分別是邊SKIPIF1<0、SKIPIF1<0上的動點,且SKIPIF1<0,點SKIPIF1<0是SKIPIF1<0的中點,SKIPIF1<0、SKIPIF1<0,則四邊形SKIPIF1<0面積的最小值為.【答案】38【分析】首先連接AC,過B作BH⊥AC于H,當(dāng)G在BH上時,三角形ACG面積取最小值,此時四邊形AGCD面積取最小值,再連接BG,知BG=2,得到G點軌跡圓,該軌跡與BH交點即為所求最小值時的G點,利用面積法求出BH、GH的長,代入三角形面積公式求解即可.【詳解】解:連接SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,當(dāng)G在BH上時,△ACG面積取最小值,此時四邊形AGCD面積取最小值,四邊形AGCD面積=三角形ACG面積+三角形ACD面積,即四邊形AGCD面積=三角形ACG面積+24.連接BG,由G是EF中點,EF=4知,BG=2,故G在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓弧上,圓弧交SKIPIF1<0于SKIPIF1<0,此時四邊形AGCD面積取最小值,如圖所示,由勾股定理得:AC=10,∵SKIPIF1<0AC·BH=SKIPIF1<0AB·BC,∴BH=4.8,∴SKIPIF1<0,即四邊形SKIPIF1<0面積的最小值=SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】本題考查了勾股定理及矩形中的與動點相關(guān)的最值問題,解題的關(guān)鍵是利用直角三角形斜邊的直線等于斜邊的一半確定出SKIPIF1<0點的運(yùn)動軌跡.4.如圖,在△ABC中,∠C=90°,AC=8,AB=10,D是AC上一點,且CD=3,E是BC邊上一點,將△DCE沿DE折疊,使點C落在點F處,連接BF,則BF的最小值為.【答案】SKIPIF1<0/SKIPIF1<0【分析】先由折疊判斷出F的運(yùn)動軌跡是為以D為圓心,CD的長度為半徑的圓,當(dāng)B、D、F共線且F在B、D之間時BF最小,根據(jù)勾股定理及圓的性質(zhì)求出此時BD、BF的長度即可.【詳解】解:由折疊知,F(xiàn)點的運(yùn)動軌跡為:以D為圓心,CD的長度為半徑的圓,如圖所示,可知,當(dāng)點B、D、F共線,且F在B、D之間時,BF取最小值,∵∠C=90°,AC=8,AB=10,∴BC=6,在Rt△BCD中,由勾股定理得:BD=SKIPIF1<0,∴BF=BD-DF=SKIPIF1<0,故答案為:SKIPIF1<0.【點睛】本題考查了折疊的性質(zhì)、圓的性質(zhì)、勾股定理解直角三角形的知識,該題涉及的最值問題屬于中考??碱}型,根據(jù)折疊確定出F點運(yùn)動軌跡是解題關(guān)鍵.5.如圖,已知SKIPIF1<0,外心為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,分別以SKIPIF1<0,SKIPIF1<0為腰向形外作等腰直角三角形SKIPIF1<0與SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0交于點SKIPIF1<0,則SKIPIF1<0的最小值是.【答案】SKIPIF1<0【分析】由SKIPIF1<0與SKIPIF1<0是等腰直角三角形,得到SKIPIF1<0,SKIPIF1<0,根據(jù)全等三角形的性質(zhì)得到SKIPIF1<0,求得在以SKIPIF1<0為直徑的圓上,由SKIPIF1<0的外心為SKIPIF1<0,SKIPIF1<0,得到SKIPIF1<0,如圖,當(dāng)SKIPIF1<0時,SKIPIF1<0的值最小,解直角三角形即可得到結(jié)論.【詳解】解:SKIPIF1<0與SKIPIF1<0是等腰直角三角形,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0與SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0≌SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在以SKIPIF1<0為直徑的圓上,SKIPIF1<0的外心為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,如圖,當(dāng)SKIPIF1<0時,SKIPIF1<0的值最小,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.則SKIPIF1<0的最小值是SKIPIF1<0,故答案為:SKIPIF1<0.【點睛】本題考查了三角形的外接圓與外心,全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.6.如圖,正方形ABCD的邊長為4,點E為邊AD上一個動點,點F在邊CD上,且線段EF=4,點G為線段EF的中點,連接BG、CG,則BG+SKIPIF1<0CG的最小值為.【答案】5【分析】因為DG=SKIPIF1<0EF=2,所以G在以D為圓心,2為半徑圓上運(yùn)動,取DI=1,可證△GDI∽△CDG,從而得出GI=SKIPIF1<0CG,然后根據(jù)三角形三邊關(guān)系,得出BI是其最小值【詳解】解:如圖,在Rt△DEF中,G是EF的中點,∴DG=SKIPIF1<0,∴點G在以D為圓心,2為半徑的圓上運(yùn)動,在CD上截取DI=1,連接GI,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴∠GDI=∠CDG,∴△GDI∽△CDG,∴SKIPIF1<0=SKIPIF1<0,∴IG=SKIPIF1<0,∴BG+SKIPIF1<0=BG+IG≥BI,∴當(dāng)B、G、I共線時,BG+SKIPIF1<0CG最小=BI,在Rt△BCI中,CI=3,BC=4,∴BI=5,故答案是:5.【點睛】本題考查了相似三角形的性質(zhì)與判定,圓的概念,求得點SKIPIF1<0的運(yùn)動軌跡是解題的關(guān)鍵.7.如圖,在銳角△ABC中,AB=2,AC=SKIPIF1<0,∠ABC=60°.D是平面內(nèi)一動點,且∠ADB=30°,則CD的最小值是【答案】SKIPIF1<0/SKIPIF1<0【分析】作AH⊥BC于H,證明△ACH為等腰直角三角形,求得BC=SKIPIF1<0+1,在BC上截取BO=AB=2,則△OAB為等邊三角形,以O(shè)為圓心,2為半徑作⊙O,根據(jù)∠ADB=30°,可得點D在⊙O上運(yùn)動,當(dāng)DB經(jīng)過圓心O時,CD最小,其最小值為⊙O的直徑減去BC的長.【詳解】解:如圖,作AH⊥BC于H,∵AB=2,AC=SKIPIF1<0,∠ABC=60°,∴BH=SKIPIF1<0AB=1,∴AH=SKIPIF1<0,CH=SKIPIF1<0,∴△ACH為等腰直角三角形,∴∠ACB=45°,BC=CH+BH=SKIPIF1<0+1,在BC上截取BO=AB=2,則△OAB為等邊三角形,以O(shè)為圓心,2為半徑作⊙O,∵∠ADB=30°,∴點D在⊙O上運(yùn)動,當(dāng)DB經(jīng)過圓心O時,CD最小,最小值為4-(SKIPIF1<0+1)=3-SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】本題考查了勾股定理,含30度角的直角三角形的性質(zhì),等腰直角三角形的判定和性質(zhì),圓周角定理.解題的關(guān)鍵是得出點D在⊙O上運(yùn)動.8.如圖,在四邊形ABCD中,∠BAD=∠BCD=90°,∠ACD=30°,AD=2,E是AC的中點,連接DE,則線段DE長度的最小值為.【答案】SKIPIF1<0【分析】先判斷出四邊形ABCD是圓內(nèi)接四邊形,得到∠ACD=∠ABD=30°,根據(jù)題意知點E在以FG為直徑的⊙P上,連接PD交⊙P于點E,此時DE長度取得最小值,證明∠APD=90°,利用含30度角的直角三角形的性質(zhì)求解即可.【詳解】解:∵∠BAD=∠BCD=90°,∴四邊形ABCD是圓內(nèi)接四邊形,∴∠ACD=∠ABD=30°,∴∠ADB=60°,∵AD=2,∴BD=2AD=4,分別取AB、AD的中點F、G,并連接FG,EF,EG,∵E是AC的中點,∴EF∥BC,EG∥CD,∴∠AEF=∠ACB,∠AEG=∠ACD,∴∠AEF+∠AEG=∠ACB+∠ACD=90°,即∠FEG=90°,∴點E在以FG為直徑的⊙P上,如圖:當(dāng)點E恰好在線段PD上,此時DE的長度取得最小值,連接PA,∵F、G分別是AB、AD的中點,∴FG∥BD,F(xiàn)G=SKIPIF1<0BD=2,∴∠ADB=∠AGF=60°,∵PA=PG,∴△APG是等邊三角形,∴∠APG=60°,∵PG=GD=GA,且∠AGF=60°,∴∠GPD=∠GDP=30°,∴∠APD=90°,∴PD=SKIPIF1<0,∴DE長度的最小值為(SKIPIF1<0).故答案為:(SKIPIF1<0).【點睛】本題考查了圓周角定理,圓內(nèi)接四邊形的性質(zhì),等邊三角形的判定和性質(zhì),含30度角的直角三角形的性質(zhì),得到點E在以FG為直徑的⊙P上是解題的關(guān)鍵.9.如圖,點SKIPIF1<0,SKIPIF1<0的坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為坐標(biāo)平面內(nèi)一動點,且SKIPIF1<0,點SKIPIF1<0為線段SKIPIF1<0的中點,連接SKIPIF1<0,當(dāng)SKIPIF1<0取最大值時,點SKIPIF1<0的縱坐標(biāo)為.【答案】SKIPIF1<0【分析】根據(jù)同圓的半徑相等可知:點C在半徑為2的⊙B上,通過畫圖可知,C在AB的延長線上時,AC最大,根據(jù)中點坐標(biāo)公式可得結(jié)論.【詳解】解:如圖,∵點C為坐標(biāo)平面內(nèi)一點,BC=2,∴C在⊙B上,且半徑為2,∴當(dāng)C在AB的延長線上時,AC最大,過點C作CD⊥x軸,∵點SKIPIF1<0,SKIPIF1<0的坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0是等腰直角三角形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∵CD⊥x軸,∴SKIPIF1<0是等腰直角三角形,∴SKIPIF1<0,∵SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,∴C點的縱坐標(biāo)為SKIPIF1<0,∵點SKIPIF1<0為線段SKIPIF1<0的中點,∴點SKIPIF1<0的縱坐標(biāo)為SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】本題考查了坐標(biāo)和圖形的性質(zhì),動點線段最值問題,勾股定理等知識,確定AC為最大值時點C的位置是解題的關(guān)鍵.10.如圖,正方形ABCD,邊長為4,點P和點Q在正方形的邊上運(yùn)動,且PQ=4,若點P從點B出發(fā)沿B→C→D→A的路線向點A運(yùn)動,到點A停止運(yùn)動;點Q從點A出發(fā),沿A→B→C→D的路線向點D運(yùn)動,到達(dá)點D停止運(yùn)動.它們同時出發(fā),且運(yùn)動速度相同,則在運(yùn)動過程中PQ的中點O所經(jīng)過的路徑長為.【答案】SKIPIF1<0【詳解】解:畫出點O運(yùn)動的軌跡,如圖虛線部分,則點P從B到A的運(yùn)動過程中,PQ的中點O所經(jīng)過的路線長等于SKIPIF1<03π,故答案為:3π.11.如圖,Rt△ABC中,∠ACB=90°,∠CAB=60°,AB=4,點P是BC邊上的動點,過點c作直線記的垂線,垂足為Q,當(dāng)點P從點C運(yùn)動到點B時,點Q的運(yùn)動路徑長為.【答案】SKIPIF1<0【詳解】解:∵AQ⊥CQ,∴∠AQC=90°,∴當(dāng)點P從點C運(yùn)動到點B時,點Q的運(yùn)動的軌跡是以AC為直徑的半圓上,路徑是120度的弧長,在Rt△ABC中,∵AB=4,∠B=30°,∴ACSKIPIF1<0AB=2,∴點Q的運(yùn)動路徑長為SKIPIF1<0π12.如圖,△ABC為等邊三角形,AB=2,若P為△ABC內(nèi)一動點,且滿足∠PAB=∠ACP,則點P運(yùn)動的路徑長為.【答案】SKIPIF1<0【詳解】解:∵△ABC是等邊三角形,∴∠ABC=∠BAC=60°,AC=AB=2,∵∠PAB=∠ACP,∴∠PAC+∠ACP=60°,∴∠APC=120°,∴點P的運(yùn)動軌跡是SKIPIF1<0,如圖所示:連接OA、OC,作OD⊥AC于D,則AD=CDSKIPIF1<0AC=1,∵SKIPIF1<0所對的圓心角=2∠APC=240°,∴劣弧AC所對的圓心角∠AOC=360°﹣240°=120°,∵OA=OC,∴∠OAD=30°,∵OD⊥AC,∴ODSKIPIF1<0ADSKIPIF1<0,OA=2ODSKIPIF1<0,∴SKIPIF1<0的長為SKIPIF1<0π;故答案為:SKIPIF1<0π.13.如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,D是BC上一動點,連接AD,過點C作CE⊥AD于E,過點E作EF⊥AB交BC于點F,則CF的最大值是.【答案】SKIPIF1<0【分析】如圖,取AC的中點O,連接OE,OF,延長FE交AB于T.證明OE=SKIPIF1<0AC=1,推出點E的在以O(shè)為圓心,1為半徑的圓上運(yùn)動,推出當(dāng)FT與⊙O相切時,CF的值最大.【詳解】解:如圖,取AC的中點O,連接OE,OF,延長FE交AB于T.∵∠ACB=90°,AB=4,∠B=30°,∴∠CAB=60°,AC=SKIPIF1<0AB=2,∵CE⊥AD,∴∠AEC=90°,∵AO=OC=1,∴OE=SKIPIF1<0AC=1,∴點E在以O(shè)為圓心,1為半徑的圓上運(yùn)動,∴當(dāng)FT與⊙O相切時,CF的值最大,∵直線CF,直線EF都是⊙O的切線,∴FC=FE,∴∠FCE=∠FEC,∵∠CAE+∠ACE=90°,∠ACE+∠ECF=90°,∴∠CAE=∠FCE,∵∠CEF+∠AET=90°,∠AET+∠EAT=90°,∴∠FEC=∠EAT,∴∠CAE=∠EAT=30°,∵CF=FE,OC=OE,∴OF⊥EC,∵AD⊥CE,∵OF∥AD,∴∠COF=∠CAD=30°,∴CF=OC?tan30°=SKIPIF1<0,∴CF的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】本題主要考查直角三角形30°角的性質(zhì),直線與圓的位置關(guān)系,線段的垂直平分線的性質(zhì)等知識,解決本題的關(guān)鍵是發(fā)現(xiàn)點E在以O(shè)為圓心,1為半徑的圓上運(yùn)動,推出當(dāng)FT與⊙O相切時,CF的值最大.14.如圖,SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0內(nèi)部的一個動點,且滿足SKIPIF1<0,則線段SKIPIF1<0長的最小值為.【答案】2:【分析】首先證明點P在以AB為直徑的⊙O上,連接OC與⊙O交于點P,此時PC最小,利用勾股定理求出OC即可解決問題.【詳解】∵∠PAB+∠PBA=90°∴∠APB=90°∴點P在以AB為直徑的弧上(P在△ABC內(nèi))設(shè)以AB為直徑的圓心為點O,如圖接OC,交☉O于點P,此時的PC最短∵AB=6,∴OB=3∵BC=4∴SKIPIF1<0∴PC=5-3=2【點睛】此題考查了三角形與圓的綜合題,重點是發(fā)現(xiàn)滿足什么條件時PC有最小值.關(guān)于三點共線的最短距離是中考偏好考的考點之一,此類問題借助圖形進(jìn)行理解,發(fā)現(xiàn)點O的位置是關(guān)鍵.15.如圖,在矩形ABCD中,AB=4,AD=6,E是AB邊的中點,F(xiàn)是線段BC上的動點,將ΔEBF沿EF所在直線折疊得到ΔEB'F,連接B'D,則B'D的最小值是.【答案】SKIPIF1<0.【分析】如圖所示,點B'在以E為圓心EA為半徑的圓上運(yùn)動,當(dāng)D、B'、E共線時,B'D的值最小,根據(jù)勾股定理求出DE,根據(jù)折疊的性質(zhì)可知B'E=BE=2,即可求出B'D.【詳解】如圖所示點B'在以E為圓心EA為半徑的圓上運(yùn)動,當(dāng)D、B'、E共線時,B'D的值最小,根據(jù)折疊的性質(zhì),△EBF≌△EB'F,∴∠B=∠EB'F,EB'=EB.∵E是AB邊的中點,AB=4,∴AE=EB'=2.∵AD=6,∴DESKIPIF1<02SKIPIF1<0,∴B'D=2SKIPIF1<02.故答案為2SKIPIF1<02.【點睛】本題考查了折疊的性質(zhì)、全等三角形的判定與性質(zhì)、兩點之間線段最短的綜合運(yùn)用;確定點B'在何位置時,B'D的值最小是解決問題的關(guān)鍵.16.如圖,在矩形ABCD中,AB=8,BC=5,P是矩形內(nèi)部一動點,且滿足∠PAB=∠PBC,則線段CP的最小值是.【答案】SKIPIF1<0﹣4.【分析】連接OC與圓O交于點P,先證明點P在以AB為直徑的圓O上,再利用勾股定理求出OC即可.【詳解】∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴OP=OA=OB(直角三角形斜邊中線等于斜邊一半),∴點P在以AB為直徑的⊙O上,連接OC交⊙O于點P,此時PC最小,∵在矩形ABCD中,AB=8,BC=5,在RT△BCO中,∵∠OBC=90°,BC=5,OB=4,∴OC=SKIPIF1<0,∴PC=OC﹣OP=SKIPIF1<0﹣4.∴PC最小值為SKIPIF1<0﹣4.故答案為SKIPIF1<0﹣4.【點睛】本題考查了點與圓的的位置關(guān)系、圓周角定理及最短路徑等知識,會求圓外一點到圓的最大距離和最小距離是解題的關(guān)鍵.二、解答題17.如圖,在正方形SKIPIF1<0中,點E在直線SKIPIF1<0右側(cè),且SKIPIF1<0,以SKIPIF1<0為邊作正方形SKIPIF1<0,射線SKIPIF1<0與邊SKIPIF1<0交于點M,連接SKIPIF1<0、SKIPIF1<0.(1)如圖1,求證:SKIPIF1<0;(2)若正方形SKIPIF1<0的邊長為4,①如圖2,當(dāng)G、C、M三點共線時,設(shè)SKIPIF1<0與SKIPIF1<0交于點N,求SKIPIF1<0的值;②如圖3,取SKIPIF1<0中點P,連接SKIPIF1<0,求SKIPIF1<0長度的最大值.【答案】(1)見解析(2)①SKIPIF1<0,②當(dāng)P、B、F三點共線時,PF有最大值為SKIPIF1<0【分析】(1)對角線SKIPIF1<0是正方形SKIPIF1<0的對稱軸,即可得SKIPIF1<0;(2)①當(dāng)G、C、M三點共線時,根據(jù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0進(jìn)而即可求得SKIPIF1<0的值;②連接SKIPIF1<0,證明SKIPIF1<0,求出相似比,求出SKIPIF1<0,當(dāng)P、B、F三點共線時,即可求出最大值.【詳解】(1)如圖1,∵對角線SKIPIF1<0是正方形SKIPIF1<0的對稱軸,∴SKIPIF1<0;(2)如圖2,①當(dāng)G、C、M三點共線時,∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,②如圖3,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;在SKIPIF1<0中,SKIPIF1<0,當(dāng)P、B、F三點共線時,PF有最大值:SKIPIF1<0.【點睛】本題考查了正方形的性質(zhì),相似三角形的性質(zhì),掌握相似三角形的性質(zhì)與判定是解題的關(guān)鍵.18.已知,平面直角坐標(biāo)系中有一個邊長為6的正方形SKIPIF1<0,SKIPIF1<0為線段SKIPIF1<0上的動點,將SKIPIF1<0沿直線SKIPIF1<0對折,使SKIPIF1<0點落在SKIPIF1<0處.(1)如圖①,當(dāng)SKIPIF1<0時,求點SKIPIF1<0的坐標(biāo);(2)如圖②,連接SKIPIF1<0,當(dāng)SKIPIF1<0時.①求點SKIPIF1<0的坐標(biāo);②連接SKIPIF1<0,求SKIPIF1<0與SKIPIF1<0重疊部分的面積;(3)當(dāng)點SKIPIF1<0在線段SKIPIF1<0(不包括端點)上運(yùn)動時,請直接寫出線段SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)①SKIPIF1<0,②SKIPIF1<0(3)SKIPIF1<0【分析】(1)如圖,連接SKIPIF1<0交SKIPIF1<0于SKIPIF1<0過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0由對折可得:SKIPIF1<0證明SKIPIF1<0是等邊三角形,可得SKIPIF1<0再利用三角函數(shù)可得答案;(2)①利用平行線的性質(zhì)證明SKIPIF1<0從而可得答案;②如圖,連接SKIPIF1<0交SKIPIF1<0于SKIPIF1<0交SKIPIF1<0于SKIPIF1<0過SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0過SKIPIF1<0于SKIPIF1<0再分別求解SKIPIF1<0的坐標(biāo),利用函數(shù)解析式與三角形的面積公式可得答案;(3)如圖,由對折可得SKIPIF1<0則SKIPIF1<0在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的SKIPIF1<0上運(yùn)動,與SKIPIF1<0不重合,連接AC,交SKIPIF1<0于SKIPIF1<0當(dāng)SKIPIF1<0重合時,SKIPIF1<0取得最小值,從而可得答案.【詳解】(1)解:如圖,連接SKIPIF1<0交SKIPIF1<0于SKIPIF1<0過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0由對折可得:SKIPIF1<0SKIPIF1<0SKIPIF1<0是等邊三角形,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)①SKIPIF1<0SKIPIF1<0而SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0②如圖,連接SKIPIF1<0交SKIPIF1<0于SKIPIF1<0交SKIPIF1<0于SKIPIF1<0過SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0過SKIPIF1<0于SKIPIF1<0由①得:SKIPIF1<0設(shè)SKIPIF1<0則SKIPIF1<0SKIPIF1<0解得:SKIPIF1<0(不符合題意的根舍去)SKIPIF1<0SKIPIF1<0而SKIPIF1<0設(shè)SKIPIF1<0為SKIPIF1<0則SKIPIF1<0解得:SKIPIF1<0∴SKIPIF1<0為SKIPIF1<0同理可得:AM為SKIPIF1<0OB為SKIPIF1<0SKIPIF1<0解得:SKIPIF1<0即SKIPIF1<0所以SKIPIF1<0SKIPIF1<0即SKIPIF1<0同理可得:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0與SKIPIF1<0重疊部分的面積為:SKIPIF1<0(3)如圖,由對折可得SKIPIF1<0∴SKIPIF1<0在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的SKIPIF1<0上運(yùn)動,與SKIPIF1<0不重合,連接AC,交SKIPIF1<0于SKIPIF1<0當(dāng)SKIPIF1<0重合時,SKIPIF1<0取得最小值,此時SKIPIF1<0SKIPIF1<0所以SKIPIF1<0的取值范圍為:SKIPIF1<0【點睛】本題考查的是正方形的性質(zhì),等邊三角形的判定與性質(zhì),軸對稱的性質(zhì),一次函數(shù)的幾何應(yīng)用,圓的基本性質(zhì),銳角三角函數(shù)的應(yīng)用,熟練的利用一次函數(shù)的性質(zhì)解決幾何圖形面積問題,利用圓的基本性質(zhì)求解線段長度的最小值是解本題的關(guān)鍵.19.如圖,拋物線SKIPIF1<0(a為常數(shù),SKIPIF1<0)與x軸分別交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,且OB=OC.(1)求a的值;(2)點D是該拋物線的頂點,點P(m,n)是第三象限內(nèi)拋物線上的一個點,分別連接BD、BC、CD、BP,當(dāng)∠PBA=∠CBD時,求m的值;(3)點K為坐標(biāo)平面內(nèi)一點,DK=2,點M為線段BK的中點,連接AM,當(dāng)AM最大時,求點K的坐標(biāo).【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【分析】(1)先求得SKIPIF1<0,SKIPIF1<0點的坐標(biāo),進(jìn)而根據(jù)SKIPIF1<0即可求得SKIPIF1<0的值;(2)過點SKIPIF1<0作SKIPIF1<0軸于點SKIPIF1<0,證明SKIPIF1<0是直角三角形,進(jìn)而SKIPIF1<0,根據(jù)相似的性質(zhì)列出比例式進(jìn)而代入點SKIPIF1<0的坐標(biāo)解方程即可;(3)接SKIPIF1<0,取SKIPIF1<0的中點SKIPIF1<0,連接SKIPIF1<0,根據(jù)題意,點SKIPIF1<0在以SKIPIF1<0為圓心,2為半徑的圓上,則SKIPIF1<0在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓上運(yùn)動,根據(jù)點與圓的距離求最值,進(jìn)而求得SKIPIF1<0的解析式為SKIPIF1<0,根據(jù)SKIPIF1<0,設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0,將點SKIPIF1<0代入求得SKIPIF1<0,進(jìn)而設(shè)SKIPIF1<0,根據(jù)SKIPIF1<0,進(jìn)而根據(jù)勾股定理列出方程解方程求解即可.【詳解】(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0令SKIPIF1<0,解得SKIPIF1<0令SKIPIF1<0,SKIPIF1<0SKIPIF1<0拋物線SKIPIF1<0(a為常數(shù),SKIPIF1<0)與x軸分別交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,SKIPIF1<0拋物線與SKIPIF1<0軸的交點為SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0解得SKIPIF1<0(2)如圖,過點SKIPIF1<0作SKIPIF1<0軸于點SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0是直角三角形,且SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0又SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0在拋物線SKIPIF1<0上,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0整理得SKIPIF1<0解得SKIPIF1<0(舍)SKIPIF1<0在第三象限,SKIPIF1<0SKIPIF1<0(3)如圖,連接SKIPIF1<0,取SKIPIF1<0的中點SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中位線SKIPIF1<0根據(jù)題意點SKIPIF1<0在以SKIPIF1<0為圓心,2為半徑的圓上,則SKIPIF1<0在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓上運(yùn)動,當(dāng)SKIPIF1<0三點共線,且SKIPIF1<0在SKIPIF1<0的延長線上時,SKIPIF1<0最大,如圖,SKIPIF1<0SKIPIF1<0即SKIPIF1<0SKIPIF1<0設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0,代入點SKIPIF1<0,即SKIPIF1<0解得SKIPIF1<0SKIPIF1<0直線SKIPIF1<0的解析式為SKIPIF1<0SKIPIF1<0設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0SKIPIF1<0SKIPIF1<0解得SKIPIF1<0則SKIPIF1<0的解析式為SKIPIF1<0設(shè)點SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026屆北京市朝陽區(qū)高三上學(xué)期期末質(zhì)量檢測歷史試題(含答案)
- 試驗員鐵路考試題及答案
- 山西人證考試題庫及答案
- 氣車技師考試題目及答案
- 人教版地理八年級上學(xué)期期末質(zhì)量檢測(解析版)
- 湖南省婁底市雙峰縣2024-2025學(xué)年八年級上學(xué)期期末考試地理試題(含答案)
- 《GAT 1049.6-2013公安交通集成指揮平臺通信協(xié)議 第6部分:交通信息發(fā)布系統(tǒng)》專題研究報告
- 2026年深圳中考語文高頻考點精練試卷(附答案可下載)
- 2026年大學(xué)大二(機(jī)械設(shè)計制造及其自動化)數(shù)控加工技術(shù)階段測試題及答案
- 創(chuàng)新科技技術(shù)介紹
- 3D打印增材制造技術(shù) 課件 【ch01】增材制造中的三維模型及數(shù)據(jù)處理
- 醫(yī)院保潔應(yīng)急預(yù)案
- 改進(jìn)維持性血液透析患者貧血狀況PDCA
- 阿司匹林在心血管疾病級預(yù)防中的應(yīng)用
- 化工設(shè)備培訓(xùn)
- D500-D505 2016年合訂本防雷與接地圖集
- 鋼結(jié)構(gòu)安裝施工專項方案
- 國家開放大學(xué)電大??啤毒W(wǎng)絡(luò)信息編輯》期末試題標(biāo)準(zhǔn)題庫及答案(試卷號:2489)
- GB/T 20914.1-2007沖模氮?dú)鈴椈傻?部分:通用規(guī)格
- FZ/T 90086-1995紡織機(jī)械與附件下羅拉軸承和有關(guān)尺寸
- 登桿培訓(xùn)材料課件
評論
0/150
提交評論