版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
GenerativeAdversarialNetwork(GAN)RestrictedBoltzmannMachine:://.tw/~tlkagk/courses/MLDS_2015_2/Lecture/RBM%20(v2).ecm.mp4/index.htmlGibbsSampling:://.tw/~tlkagk/courses/MLDS_2015_2/Lecture/MRF%20(v2).ecm.mp4/index.htmlOutlook:NIPS2016Tutorial:GenerativeAdversarialNetworksAuthor:IanGoodfellowPaper:s:///abs/1701.00160Video:YoucanfindtipsfortrainingGANhere:s://github/soumith/ganhacksReviewGenerationDrawing?WritingPoems?Review:Auto-encoderAscloseaspossibleNNEncoderNNDecodercodeNNDecodercodeRandomlygenerateavectorascodeImage?Review:Auto-encoderNNDecodercode2D-1.51.5
NNDecoder
NNDecoderReview:Auto-encoder-1.51.5NNEncoderNNDecodercodeinputoutputAuto-encoderVAENNEncoderinputNNDecoderoutputm1m2m3
Fromanormaldistribution
X+Minimizereconstructionerror
exp
MinimizeAuto-EncodingVariationalBayes,s:///abs/1312.6114ProblemsofVAEItdoesnotreallytrytosimulaterealimagesNNDecodercodeOutputAscloseaspossibleOnepixeldifferencefromthetargetOnepixeldifferencefromthetargetRealisticFakeTheevolutionofgenerationNNGeneratorv1Discri-minatorv1Realimages:NNGeneratorv2Discri-minatorv2NNGeneratorv3Discri-minatorv3BinaryClassifierTheevolutionofgenerationNNGeneratorv1Discri-minatorv1Realimages:NNGeneratorv2Discri-minatorv2NNGeneratorv3Discri-minatorv3GAN-DiscriminatorNNGeneratorv1Realimages:Discri-minatorv1image1/0(realorfake)SomethinglikeDecoderinVAERandomlysampleavector11110000GAN-GeneratorDiscri-minatorv1NNGeneratorv1Randomlysampleavector0.13UpdatingtheparametersofgeneratorTheoutputbeclassifiedas“real”(ascloseto1aspossible)Generator+Discriminator=anetworkUsinggradientdescenttoupdatetheparametersinthegenerator,butfixthediscriminator1.0v2GAN
–二次元人物頭像鍊成DCGAN:s://github/carpedm20/DCGAN-tensorflowGAN
–二次元人物頭像鍊成100roundsGAN
–二次元人物頭像鍊成1000roundsGAN
–二次元人物頭像鍊成2000roundsGAN
–二次元人物頭像鍊成5000roundsGAN
–二次元人物頭像鍊成10,000roundsGAN
–二次元人物頭像鍊成20,000roundsGAN
–二次元人物頭像鍊成50,000roundsBasicIdeaofGANMaximumLikelihoodEstimation
Likelihoodofgeneratingthesamples
MaximumLikelihoodEstimation
Itisdifficulttocomputethelikelihood.
BasicIdeaofGANGeneratorGGisafunction,inputz,outputxGivenapriordistributionPprior(z),aprobabilitydistributionPG(x)isdefinedbyfunctionGDiscriminatorDDisafunction,inputx,outputscalarEvaluatethe“difference”betweenPG(x)andPdata(x)ThereisafunctionV(G,D).
HardtolearnbymaximumlikelihoodBasicIdea
GivenG,whatistheoptimalD*maximizingGivenx,theoptimalD*maximizing
AssumethatD(x)canhaveanyvaluehere
Givenx,theoptimalD*maximizingFindD*maximizing:
aDbD0<<1
22
Jensen-Shannondivergence
Intheend……
0<<log2
Algorithm
Algorithm
DecreaseJS
divergence(?)DecreaseJS
divergence(?)Algorithm
DecreaseJS
divergence(?)
smaller
……
Don’tupdateGtoomuchInpractice…
Maximize
MinimizeCross-entropyBinaryClassifierOutputisD(x)Minimize–logD(x)IfxisapositiveexampleIfxisanegativeexampleMinimize–log(1-D(x))
PositiveexamplesNegativeexamples
MaximizeMinimize
MinimizeCross-entropyBinaryClassifierOutputisf(x)Minimize–logf(x)IfxisapositiveexampleIfxisanegativeexampleMinimize–log(1-f(x))
AlgorithmRepeatktimesLearningDLearningG
CanonlyfindlowerfoundofOnlyOnceObjectiveFunctionforGenerator
inRealImplementation
Realimplementation:labelxfromPGaspositive
SlowatthebeginningDemoThecodeusedindemofrom:s://github/osh/KerasGAN/blob/master/MNIST_CNN_GAN_v2.ipynbIssueaboutEvaluatingtheDivergenceEvaluatingJSdivergenceMartinArjovsky,
LéonBottou,TowardsPrincipledMethodsforTrainingGenerativeAdversarialNetworks,
2017,arXivpreprintEvaluatingJSdivergenceJSdivergenceestimatedbydiscriminatortellinglittleinformations:///abs/1701.07875WeakGeneratorStrongGeneratorDiscriminator
Reason1.Approximatebysampling
10=0
log2Weakenyourdiscriminator?CanweakdiscriminatorcomputeJSdivergence?Discriminator
Reason2.thenatureofdata
10=0
log2
UsuallytheydonothaveanyoverlapEvaluationBetterEvaluation
Better…………Notreallybetter……AddNoiseAddsomeartificialnoisetotheinputsofdiscriminatorMakethelabelsnoisyforthediscriminator
DiscriminatorcannotperfectlyseparaterealandgenerateddataNoisesdecayovertimeModeCollapseModeCollapseDataDistributionGeneratedDistributionModeCollapse
Whatwewant…Inreality…FlawinOptimization?
ModifiedfromIanGoodfellow’stutorial
Thismaynotbethereason(basedonIanGoodfellow’stutorial)SomanyGANs……ModifyingtheOptimizationofGANfGANWGANLeast-squareGANLossSensitiveGANEnergy-basedGANBoundary-seekingGANUnrollGAN……DifferentStructurefromtheOriginalGANConditionalGANSemi-supervisedGANInfoGANBiGANCycleGANDiscoGANVAE-GAN……ConditionalGANMotivationGeneratorScottReed,ZeynepAkata,XinchenYan,LajanugenLogeswaran,BerntSchiele,HonglakLee,“GenerativeAdversarialText-to-ImageSynthesis”,ICML2016TextImageScottReed,
ZeynepAkata,
SantoshMohan,
SamuelTenka,
BerntSchiele,
HonglakLee,“LearningWhatandWheretoDraw”,NIPS2016HanZhang,
TaoXu,
HongshengLi,
ShaotingZhang,
XiaoleiHuang,
XiaogangWang,
DimitrisMetaxas,“StackGAN:TexttoPhoto-realisticImageSynthesiswithStackedGenerativeAdversarialNetworks”,arXivprepring,2016MotivationChallengeNNTextImage(apoint,notadistribution)Text:“train”NN
output
ConditionalGANG
conditionPriordistributionLearntoapproximateP(x|c)D(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 開展評估工作方案
- 院校后勤服務(wù)實施方案
- 綠色防控推進工作方案
- 項目建設(shè)模式試點的方案
- 海事治亂工作方案
- 作業(yè)設(shè)計研究工作方案
- 2026年旅游景區(qū)智能導(dǎo)覽服務(wù)方案
- XX中學關(guān)于初一年級新生入學適應(yīng)期心理團體輔導(dǎo)活動方案
- 2026年吉安縣產(chǎn)業(yè)發(fā)展投資有限責任公司面向社會公開招聘部分崗位延期備考考試題庫及答案解析
- 2026上海交通大學醫(yī)學院招聘91人參考考試題庫及答案解析
- 治療失眠癥的認知行為療法訓(xùn)練
- 太原師范學院簡介
- 2026年湘西民族職業(yè)技術(shù)學院單招職業(yè)傾向性考試題庫新版
- 生產(chǎn)安全事故調(diào)查分析規(guī)則
- 2021??低旸S-AT1000S超容量系列網(wǎng)絡(luò)存儲設(shè)備用戶手冊
- 水利水電工程單元工程施工質(zhì)量驗收標準第8部分:安全監(jiān)測工程
- 【政治】2025年高考真題政治-海南卷(解析版-1)
- DB50∕T 1571-2024 智能網(wǎng)聯(lián)汽車自動駕駛功能測試規(guī)范
- 低蛋白血癥患者的護理講課件
- 建設(shè)工程招投標培訓(xùn)課件
- 健康骨骼課件
評論
0/150
提交評論