湖北省宜昌市2023年九年級數(shù)學第一學期期末監(jiān)測試題含解析_第1頁
湖北省宜昌市2023年九年級數(shù)學第一學期期末監(jiān)測試題含解析_第2頁
湖北省宜昌市2023年九年級數(shù)學第一學期期末監(jiān)測試題含解析_第3頁
湖北省宜昌市2023年九年級數(shù)學第一學期期末監(jiān)測試題含解析_第4頁
湖北省宜昌市2023年九年級數(shù)學第一學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖北省宜昌市2023年九年級數(shù)學第一學期期末監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.某工廠生產(chǎn)的某種產(chǎn)品按質量分為10個檔次,第1檔次(最低檔次)的產(chǎn)品一天能生產(chǎn)95件,每件利潤6元,每提高一個檔次,每件利潤增加2元,但一天產(chǎn)量減少5件.若生產(chǎn)的產(chǎn)品一天的總利潤為1120元,且同一天所生產(chǎn)的產(chǎn)品為同一檔次,則該產(chǎn)品的質量檔次是()A.6 B.8 C.10 D.122.一元二次方程x2﹣3x=0的兩個根是()A.x1=0,x2=﹣3 B.x1=0,x2=3 C.x1=1,x2=3 D.x1=1,x2=﹣33.如圖,在線段AB上有一點C,在AB的同側作等腰△ACD和等腰△ECB,且AC=AD,EC=EB,∠DAC=∠CEB,直線BD與線段AE,線段CE分別交于點F,G.對于下列結論:①△DCG∽△BEG;②△ACE∽△DCB;③GF·GB=GC·GE;④若∠DAC=∠CEB=90°,則2AD2=DF·DG.其中正確的是()A.①②③④ B.①②③ C.①③④ D.①②4.方程化為一元二次方程一般形式后,二次項系數(shù)、一次項系數(shù)、常數(shù)項分別是()A.5,6,-8 B.5,-6,-8 C.5,-6,8 D.6,5,-85.如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點,且A,B兩點的橫坐標分別是2和4,則△OAB的面積是()A.4 B.3 C.2 D.16.如圖,在中,,且DE分別交AB,AC于點D,E,若,則△和△的面積之比等于()A. B. C. D.7.如圖,在矩形中,,,過對角線交點作交于點,交于點,則的長是()A.1 B. C.2 D.8.如圖,已知△AOB與△A1OB1是以點O為位似中心的位似圖形,且相似比為1:2,點B的坐標為(-1,2),則點B1的坐標為()A.(2,-4) B.(1,-4) C.(-1,4) D.(-4,2)9.在一個晴朗的上午,小麗拿著一塊矩形木板在陽光下做投影實驗,矩形木板在地面上形成的投影不可能是()A. B.C. D.10.如圖,⊙O的半徑為5,△ABC是⊙O的內(nèi)接三角形,連接OB、OC.若∠BAC與∠BOC互補,則弦BC的長為()A. B. C. D.11.如圖,在△ABC中,AD⊥BC,垂足為點D,若AC=,∠C=45°,tan∠ABC=3,則BD等于()A.2 B.3 C. D.12.如圖,函數(shù)的圖象與軸的一個交點坐標為(3,0),則另一交點的橫坐標為()A.﹣4 B.﹣3 C.﹣2 D.﹣1二、填空題(每題4分,共24分)13.已知實數(shù)在數(shù)軸上的位置如圖所示,則化簡__________.14.不等式組的解集是_____________.15.函數(shù)和在第一象限內(nèi)的圖象如圖,點是的圖象上一動點,軸于點,交的圖象于點;軸于點,交的圖象于點,則四邊形的面積為______.16.如圖,AB∥CD∥EF,AF與BE相交于點G,且AG=2,GD=1,DF=5,那么的值等于________.17.二次函數(shù)的圖象與軸交于兩點(點在點的左側),與軸交于點,作直線,將直線下方的二次函數(shù)圖象沿直線向上翻折,與其它剩余部分組成一個組合圖象,若線段與組合圖象有兩個交點,則的取值范圍為_____.18.隨著信息化時代的到來,微信支付、支付寶支付、QQ紅包支付、銀行卡支付等各種便捷支付已經(jīng)成為我們生活中的一部分,某學校某宿舍的5名同學,有3人使用微信支付,2人使用支付寶支付,問從這5人中隨機抽出兩人,使用同一種支付方式的概率是_____.三、解答題(共78分)19.(8分)已知關于的方程。(1)若該方程的一個根是,求的值及該方程的另一個根;(2)求證:不論取何實數(shù),該方程都有兩個不相等的實數(shù)根。20.(8分)近年來,無人機航拍測量的應用越來越廣泛.如圖,無人機從A處觀測得某建筑物頂點O時俯角為30°,繼續(xù)水平前行10米到達B處,測得俯角為45°,已知無人機的水平飛行高度為45米,則這棟樓的高度是多少米?(結果保留根號)21.(8分)(1)計算:.(2)用適當?shù)姆椒ń庀铝蟹匠?;①;②?2.(10分)已知:如圖,菱形中,點,分別在,邊上,,連接,.求證:.23.(10分)某校九年級數(shù)學興趣小組為了測得該校地下停車場的限高CD,在課外活動時間測得下列數(shù)據(jù):如圖,從地面E點測得地下停車場的俯角為30°,斜坡AE的長為16米,地面B點(與E點在同一個水平線)距停車場頂部C點(A、C、B在同一條直線上且與水平線垂直)2米.試求該校地下停車場的高度AC及限高CD(結果精確到0.1米,≈1.732).24.(10分)已知拋物線y=kx2+(1﹣2k)x+1﹣3k與x軸有兩個不同的交點A、B.(1)求k的取值范圍;(2)證明該拋物線一定經(jīng)過非坐標軸上的一點M,并求出點M的坐標;(3)當<k≤8時,由(2)求出的點M和點A,B構成的△ABM的面積是否有最值?若有,求出該最值及相對應的k值.25.(12分)求下列各式的值:(1)2sin30°﹣3cos60°(2)16cos245°﹣.26.在平面直角坐標系xOy中,⊙O的半徑為r(r>0).給出如下定義:若平面上一點P到圓心O的距離d,滿足,則稱點P為⊙O的“隨心點”.(1)當⊙O的半徑r=2時,A(3,0),B(0,4),C(,2),D(,)中,⊙O的“隨心點”是;(2)若點E(4,3)是⊙O的“隨心點”,求⊙O的半徑r的取值范圍;(3)當⊙O的半徑r=2時,直線y=-x+b(b≠0)與x軸交于點M,與y軸交于點N,若線段MN上存在⊙O的“隨心點”,直接寫出b的取值范圍.

參考答案一、選擇題(每題4分,共48分)1、A【分析】設該產(chǎn)品的質量檔次是x檔,則每天的產(chǎn)量為[95﹣5(x﹣1)]件,每件的利潤是[6+2(x﹣1)]元,根據(jù)總利潤=單件利潤×銷售數(shù)量,即可得出關于x的一元二次方程,解之取其小于等于10的值即可得出結論.【詳解】設該產(chǎn)品的質量檔次是x檔,則每天的產(chǎn)量為[95﹣5(x﹣1)]件,每件的利潤是[6+2(x﹣1)]元,根據(jù)題意得:[6+2(x﹣1)][95﹣5(x﹣1)]=1120,整理得:x2﹣18x+72=0,解得:x1=6,x2=12(舍去).故選A.【點睛】本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.2、B【分析】利用因式分解法解一元二次方程即可.【詳解】x2﹣1x=0,x(x﹣1)=0,x=0或x﹣1=0,x1=0,x2=1.故選:B.【點睛】本題考查了解一元二次方程?因式分解法:就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉化為解一元一次方程的問題了(數(shù)學轉化思想).3、A【解析】利用三角形的內(nèi)角和定理及兩組角分別相等證明①正確;根據(jù)兩組邊成比例夾角相等判斷②正確;利用③的相似三角形證得∠AEC=∠DBC,又對頂角相等,證得③正確;根據(jù)△ACE∽△DCB證得F、E、B、C四點共圓,由此推出△DCF∽△DGC,列比例線段即可證得④正確.【詳解】①正確;在等腰△ACD和等腰△ECB中AC=AD,EC=EB,∠DAC=∠CEB,∴∠ACD=∠ADC=∠BCE=∠BEC,∴∠DCG=180-∠ACD-∠BCE=∠BEC,∵∠DGC=∠BGE,∴△DCG∽△BEG;②正確;∵∠ACD+∠DCG=∠BCE+∠DCG,∴∠ACE=∠DCB,∵,∴△ACE∽△DCB;③正確;∵△ACE∽△DCB,∴∠AEC=∠DBC,∵∠FGE=∠CGB,∴△FGE∽△CGB,∴GF·GB=GC·GE;④正確;如圖,連接CF,由②可得△ACE∽△DCB,∴∠AEC=∠DBC,∴F、E、B、C四點共圓,∴∠CFB=∠CEB=90,∵∠ACD=∠ECB=45,∴∠DCE=90,∴△DCF∽△DGC∴,∴,∵,∴2AD2=DF·DG.故選:A.【點睛】此題考查相似三角形的判定及性質,等腰三角形的性質,③的證明可通過②的相似推出所需要的條件繼而得到證明;④是本題的難點,需要重新畫圖,并根據(jù)條件判定DF、DG所在的三角形相似,由此可判斷連接CF,由此證明F、E、B、C四點共圓,得到∠CFB=∠CEB=90是解本題關鍵.4、C【分析】先將該方程化為一般形式,即可得出結論.【詳解】解:先將該方程化為一般形式:.從而確定二次項系數(shù)為5,一次項系數(shù)為-6,常數(shù)項為8故選C.【考點】此題考查的是一元二次方程的項和系數(shù),掌握一元二次方程的一般形式是解決此題的關鍵.5、B【解析】先根據(jù)反比例函數(shù)圖象上點的坐標特征及A,B兩點的橫坐標,求出A(1,1),B(4,1).再過A,B兩點分別作AC⊥x軸于C,BD⊥x軸于D,根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出S△AOC=S△BOD=×4=1.根據(jù)S四邊形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面積公式求出S梯形ABDC=(BD+AC)?CD=×(1+1)×1=2,從而得出S△AOB=2.【詳解】∵A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點,且A,B兩點的橫坐標分別是1和4,∴當x=1時,y=1,即A(1,1),當x=4時,y=1,即B(4,1),如圖,過A,B兩點分別作AC⊥x軸于C,BD⊥x軸于D,則S△AOC=S△BOD=×4=1,∵S四邊形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB=S梯形ABDC,∵S梯形ABDC=(BD+AC)?CD=×(1+1)×1=2,∴S△AOB=2,故選B.【點睛】本題考查了反比例函數(shù)中k的幾何意義,反比例函數(shù)圖象上點的坐標特征,梯形的面積,熟知反比例函數(shù)圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S與k的關系為S=|k|是解題的關鍵.6、B【解析】由DE∥BC,利用“兩直線平行,同位角相等”可得出∠ADE=∠ABC,∠AED=∠ACB,進而可得出△ADE∽△ABC,再利用相似三角形的面積比等于相似比的平方即可求出結論.【詳解】∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,∴.故選B.【點睛】本題考查了相似三角形的判定與性質,牢記相似三角形的面積比等于相似比的平方是解題的關鍵.7、B【分析】連接,由矩形的性質得出,,,,由線段垂直平分線的性質得出,設,則,在中,由勾股定理得出方程,解方程即可.【詳解】如圖:連接,∵四邊形是矩形,∴,,,,∵,∴,設,則,在中,由勾股定理得:,解得:,即;故選B.【點睛】本題考查了矩形的性質、線段垂直平分線的性質、勾股定理;熟練掌握矩形的性質,由勾股定理得出方程是解題的關鍵.8、A【解析】過B作BC⊥y軸于C,過B1作B1D⊥y軸于D,依據(jù)△AOB和△A1OB1相似,且相似比為1:2,即可得到,再根據(jù)△BOC∽△B1OD,可得OD=2OC=4,B1D=2BC=2,進而得出點B1的坐標為(2,-4).【詳解】解:如圖,過B作BC⊥y軸于C,過B1作B1D⊥y軸于D,

∵點B的坐標為(-1,2),

∴BC=1,OC=2,

∵△AOB和△A1OB1相似,且相似比為1:2,∴,∵∠BCO=∠B1DO=90°,∠BOC=∠B1OD,

∴△BOC∽△B1OD,

∴OD=2OC=4,B1D=2BC=2,

∴點B1的坐標為(2,-4),

故選:A.【點睛】本題考查的是位似變換的性質,正確理解位似與相似的關系,記憶關于原點位似的兩個圖形對應點坐標之間的關系是解題的關鍵.9、A【解析】解:將矩形木框立起與地面垂直放置時,形成B選項的影子;將矩形木框與地面平行放置時,形成C選項影子;將木框傾斜放置形成D選項影子;根據(jù)同一時刻物高與影長成比例,又因矩形對邊相等,因此投影不可能是A選項中的梯形,因為梯形兩底不相等.故選A.10、C【分析】首先過點O作OD⊥BC于D,由垂徑定理可得BC=2BD,又由圓周角定理,可求得∠BOC的度數(shù),然后根據(jù)等腰三角形的性質,求得∠OBC的度數(shù),利用余弦函數(shù),即可求得答案.【詳解】過點O作OD⊥BC于D,則BC=2BD,∵△ABC內(nèi)接于⊙O,∠BAC與∠BOC互補,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB=(180°-∠BOC)=30°,∵⊙O的半徑為5,∴BD=OB?cos∠OBC=,∴BC=5,故選C.【點睛】本題考查了垂徑定理、圓周角定理、解直角三角形等,添加輔助線構造直角三角形進行解題是關鍵.11、A【解析】根據(jù)三角函數(shù)定義可得AD=AC?sin45°,從而可得AD的長,再利用正切定義可得BD的長.【詳解】∵AC=6,∠C=45°∴AD=AC?sin45°=6×=6,∵tan∠ABC=3,∴=3,∴BD==2,故選A.【點睛】本題主要考查解直角三角形,三角函數(shù)的知識,熟記知識點是解題的關鍵.12、D【分析】根據(jù)到函數(shù)對稱軸距離相等的兩個點所表示的函數(shù)值相等可求解.【詳解】根據(jù)題意可得:函數(shù)的對稱軸直線x=1,則函數(shù)圖像與x軸的另一個交點坐標為(-1,0).故橫坐標為-1,故選D考點:二次函數(shù)的性質二、填空題(每題4分,共24分)13、【分析】根據(jù)數(shù)軸得出-1<a<0<1,根據(jù)二次根式的性質得出|a-1|-|a+1|,去掉絕對值符號合并同類項即可.【詳解】∵從數(shù)軸可知:-1<a<0<1,

=|a-1|-|a+1|

=-a+1-a-1

=-2a.

故答案為-2a.【點睛】此題考查二次根式的性質,絕對值以及數(shù)軸的應用,解題關鍵在于掌握利用數(shù)軸可以比較任意兩個實數(shù)的大小,即在數(shù)軸上表示的兩個實數(shù),右邊的總比左邊的大,在原點左側,絕對值大的反而?。?4、【分析】根據(jù)解一元一次不等式組的方法求解即可;【詳解】解:由不等式①得,,由不等式②得,x<4,故不等式組的解集是:;故答案為:.【點睛】本題主要考查了一元一次不等式組,掌握一元一次不等式是解題的關鍵.15、3【解析】根據(jù)反比例函數(shù)系數(shù)k的幾何意義可分別求得△OBD、△OAC、矩形PDOC的面積,據(jù)此可求出四邊形PAOB的面積.【詳解】解:如圖,

∵A、B是反比函數(shù)上的點,

∴S△OBD=S△OAC=,∵P是反比例函數(shù)上的點,

∴S矩形PDOC=4,

∴S四邊形PAOB=S矩形PDOC-S△ODB--S△OAC=4--=3,故答案是:3.【點睛】本題考查的是反比例函數(shù)綜合題,熟知反比例函數(shù)中系數(shù)k的幾何意義是解答此題的關鍵.16、【詳解】∵AB∥CD∥EF,∴,故答案為.17、或【解析】畫出圖形,采用數(shù)形結合,分類討論討論,分直線y=t在x軸上方和下方兩種情況,需要注意的是,原拋物線與線段BC本來就有B、C兩個交點.具體過程見詳解.【詳解】解:分類討論(一):原拋物線與線段BC就有兩個交點B、C.當拋物線在x軸下方部分,以x軸為對稱軸向上翻折后,就會又多一個交點,所以要滿足只有兩個交點,直線y=t需向上平移,點B不再是交點,交點只有點C和點B、C之間的一個點,所以t>0;當以直線y=3為對稱軸向上翻折時,線段與組合圖象就只有點C一個交點了,不符合題意,所以t<3,故;(二)∵=(x-2)2-1,∴拋物線沿翻折后的部分是拋物線)2+k在直線y=t的上方部分,當直線BC:y=-x+3與拋物線只有一個交點時,即的△=0,解得k=,此時線段BC與組合圖象W的交點,既有C、B,又多一個,共三個,不符合題意,所以翻折部分需向下平移,即直線y=t向下平移,k=時,拋物線)2+的頂點坐標為(2,),與的頂點(2,-1)的中點是(2,-),所以t<-,又因為,所以.綜上所述:t的取值范圍是:或故答案為或.【點睛】本題考查拋物線的翻折和上下平移、拋物線和線段的交點問題.解題關鍵是熟練掌握二次函數(shù)的圖像和性質.18、【詳解】解:畫樹狀圖為:(用W表示使用微信支付,Z表示使用支付寶支付)共有20種等可能的結果,其中使用同一種支付方式的結果數(shù)為8,所以使用同一種支付方式的概率為=.故答案為:.【點睛】本題考查用列表法或樹狀圖法求概率,解答關鍵是根據(jù)題意正確畫出樹狀圖或正確列表,從而解答問題.三、解答題(共78分)19、(1)、;(2)見解析【分析】(1)將代入方程,求得a的值,再將a的值代入即可;

(2)寫出根的判別式,配方后得到完全平方式,進行解答.【詳解】(1)將代入方程,得:,解得:,將代入原方程,整理可得:,解得:或,∴該方程的另一個根1.(2)∵,∴不論取何實數(shù),該方程都有兩個不相等的實數(shù)根?!军c睛】此題考查根的判別式,解題關鍵在于掌握計算公式運算法則.20、40﹣5【分析】過O點作OC⊥AB的延長線于C點,垂足為C,設OC=BC=x,則AC=10+x,利用正切值的定義列出x的方程,求出x的值,進而求出樓的高度.【詳解】過O點作OC⊥AB的延長線于C點,垂足為C,根據(jù)題意可知,∠OAC=30°,∠OBC=45°,AB=10米,AD=45米,在Rt△BCO中,∠OBC=45°,∴BC=OC,設OC=BC=x,則AC=10+x,在Rt△ACO中,,解得:x=5+5,則這棟樓的高度(米).【點睛】本題考查解直角三角形的應用-仰角、俯角的問題以及解直角三角形方法,解題的關鍵是從實際問題中構造出直角三角形.21、(1)1;(2)①x1=﹣2,x2=6;②x1=,x2=.【分析】(1)根據(jù)二次根式的乘法公式、30°的余弦值、60°的正切值和乘方的性質計算即可;(2)①利用直接開方法解一元二次方程即可;②利用公式法:解一元二次方程即可【詳解】(1)﹣2cos30°﹣tan60°+(﹣1)2018=(2)①∵(x﹣2)2﹣16=0,∴(x﹣2)2=16,∴x﹣2=4或x﹣2=﹣4,解得:x1=﹣2,x2=6;②∵a=5,b=2,c=﹣1,∴△=b2-4ac=22﹣4×5×(﹣1)=24>0,則==,即x1=,x2=.【點睛】此題考查的是含特殊角的銳角三角函數(shù)值的混合運算和解一元二次方程,掌握二次根式的乘法公式、30°的余弦值、60°的正切值、乘方的性質和利用直接開方法和公式法解一元二次方程是解決此題的關鍵.22、見解析【分析】根據(jù)菱形的性質和全等三角形的判定和性質解答即可.【詳解】證明:連接,如圖,四邊形是菱形,,在和中,,(SAS),.【點睛】本題考查菱形的性質,關鍵是根據(jù)菱形的性質和全等三角形的判定和性質解答.23、AC=6米;CD=5.2米.【分析】根據(jù)題意和正弦的定義求出AB的長,根據(jù)余弦的定義求出CD的長.【詳解】解:由題意得,AB⊥EB,CD⊥AE,∴∠CDA=∠EBA=90°,∵∠E=30°,∴AB=AE=8米,∵BC=2米,∴AC=AB﹣BC=6米,∵∠DCA=90°﹣∠DAC=30°,∴CD=AC×cos∠DCA=6×≈5.2(米).【點睛】本題考查了解直角三角形的應用,解決本題的關鍵是①掌握特殊角的函數(shù)值,②能根據(jù)題意做構建直角三角形,③熟練掌握直角三角形的邊角關系.24、(1)且;(2)見解析,M(3,4);(3)△ABM的面積有最大值,【分析】(1)根據(jù)題意得出△=(1-2k)2-4×k×(1-3k)=(1-4k)2>0,得出1-4k≠0,解不等式即可;

(2)y=k(x2-2x-3)+x+1,故只要x2-2x-3=0,那么y的值便與k無關,解得x=3或x=-1(舍去,此時y=0,在坐標軸上),故定點為(3,4);

(3)由|AB|=|xA-xB|得出|AB|=||,由已知條件得出,得出0<||≤,因此|AB|最大時,||=,解方程即可得到結果.【詳解】解:(1)當時,函數(shù)為一次函數(shù),不符合題意,舍去;當時,拋物線與軸相交于不同的兩點、,△,,,∴k的取值范圍為且;(2)證明:拋物線,,拋物線過定點說明在這一點與k無關,顯然當時,與k無關,解得:或,當時,,定點坐標為;當時,,定點坐標為,∴M不在坐標軸上,;(3),,,,,,最大時,,解得:,或(舍去),當時,有最大值,此時的面積最大,沒有最小值,則面積最大為:.【點睛】本題是二次函數(shù)綜合題目,考查了二次函數(shù)與一元二次方程的關系,根的判別式以及最值問題等知識;本題難度較大,根據(jù)題意得出點M的坐標是解決問題的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論