《集合的概念》教案_第1頁(yè)
《集合的概念》教案_第2頁(yè)
《集合的概念》教案_第3頁(yè)
《集合的概念》教案_第4頁(yè)
《集合的概念》教案_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

《的概念》教案《集合的概念》教案在教學(xué)工作者開(kāi)展教學(xué)活動(dòng)前,時(shí)常會(huì)需要準(zhǔn)備好教案,編寫(xiě)教案有利于我們科學(xué)、合理地支配課堂時(shí)間。寫(xiě)教案需要注意哪些格式呢?以下是小編整理的《集合的概念》教案,僅供參考,歡迎大家閱讀。《的概念》教案1一、教材1、教材的地位和作用《集合的概念》是人教版第一章的內(nèi)容(中職數(shù)學(xué))。本節(jié)課的主要內(nèi)容:集合以及集合有關(guān)的概念,元素與集合間的關(guān)系。初中數(shù)學(xué)課本中已現(xiàn)了一些數(shù)和點(diǎn)的集合,如:自然數(shù)的集合、有理數(shù)的集合、不等式解的集合等,但學(xué)生并不清楚“集合”在數(shù)學(xué)中的含義,集合是一個(gè)基礎(chǔ)性的概念,也是也是中職數(shù)學(xué)的開(kāi)篇,是我們后續(xù)學(xué)習(xí)的重要工具,如:用集合的語(yǔ)言表示函數(shù)的定義域、值域、方程與不等式的解集,曲線上點(diǎn)的集合等。通過(guò)本章節(jié)的學(xué)習(xí),能讓學(xué)生領(lǐng)會(huì)到數(shù)學(xué)語(yǔ)言的簡(jiǎn)潔和準(zhǔn)確性,幫助學(xué)生學(xué)會(huì)用集合的語(yǔ)言描述客觀,發(fā)展學(xué)生運(yùn)用數(shù)學(xué)語(yǔ)言交流的能力。2、教學(xué)目標(biāo)(1)知識(shí)目標(biāo):a、通過(guò)實(shí)例了解集合的含義,理解集合以及有關(guān)概念;b、初步體會(huì)元素與集合的“屬于”關(guān)系,掌握元素與集合關(guān)系的表示方法。(2)能力目標(biāo):a、讓學(xué)生感知數(shù)學(xué)知識(shí)與實(shí)際生活得密切聯(lián)系,培養(yǎng)學(xué)生解決實(shí)際的能力;b、學(xué)會(huì)借助實(shí)例分析,探究數(shù)學(xué)問(wèn)題,發(fā)展學(xué)生的觀察歸納能力。(3)情感目標(biāo):a、通過(guò)聯(lián)系生活,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,形成積極的學(xué)習(xí)態(tài)度;b、通過(guò)主動(dòng)探究,合作交流,感受探索的樂(lè)趣和成功的體驗(yàn),體會(huì)數(shù)學(xué)的理性和嚴(yán)謹(jǐn)。3、重點(diǎn)和難點(diǎn)重點(diǎn):集合的概念,元素與集合的關(guān)系。難點(diǎn):準(zhǔn)確理解集合的概念。二、學(xué)情分析(說(shuō)學(xué)情)對(duì)于中職生來(lái)說(shuō),學(xué)生的數(shù)學(xué)基礎(chǔ)相對(duì)薄弱,他們還沒(méi)具備一定的觀察、分析理解、解決實(shí)際問(wèn)題的能力,在運(yùn)算能力、思維能力等方面參差不齊,學(xué)生學(xué)好數(shù)學(xué)的自信心不強(qiáng),學(xué)習(xí)積極性不高,有厭學(xué)情緒。三、教法針對(duì)學(xué)生的實(shí)際情況,采用探究式教學(xué)法進(jìn)行教學(xué)。首先從學(xué)生較熟悉的實(shí)例出發(fā),提高學(xué)生的注意力和激發(fā)學(xué)生的學(xué)習(xí)興趣。在創(chuàng)設(shè)情境認(rèn)知策略上給予適當(dāng)?shù)狞c(diǎn)撥和引導(dǎo),引導(dǎo)學(xué)生主動(dòng)思、交流、討論,提出問(wèn)題。在此基礎(chǔ)上教師層層深入,啟發(fā)學(xué)生積極思維,逐步提升學(xué)生的數(shù)學(xué)學(xué)習(xí)能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學(xué)生的理解和掌握。四、學(xué)習(xí)指導(dǎo)(說(shuō)學(xué)法)教學(xué)的矛盾主要方面是學(xué)生的學(xué),學(xué)是中心,會(huì)學(xué)是目的,因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。根據(jù)數(shù)學(xué)的特點(diǎn)這節(jié)課主要是教學(xué)生動(dòng)腦思考、多訓(xùn)練、勤鉆研的研討,這樣做增加了學(xué)生主動(dòng)參與的機(jī)會(huì),增強(qiáng)了參與的意識(shí),教學(xué)生獲取知識(shí)的途徑,思考問(wèn)題的方法,使學(xué)生成為教學(xué)的主體,進(jìn)而才能達(dá)到預(yù)期的教學(xué)目的和效果。五、教學(xué)過(guò)程1、引入新課:a、創(chuàng)設(shè)情境,揭示本課主題,同時(shí)對(duì)集合的整體性有個(gè)初步的感性認(rèn)識(shí)。b、介紹集合論的創(chuàng)始者康托爾2、究竟什么是集合?(實(shí)例探究)切合學(xué)生現(xiàn)有的認(rèn)知水平,以學(xué)生熟悉的事物(物體),以實(shí)際生活為背景進(jìn)行探究,為本課教學(xué)創(chuàng)造出一種自然和諧的氛圍,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情接待探究過(guò)程學(xué)生積極思考、交流、作答,教師針對(duì)學(xué)生的回答啟發(fā),引導(dǎo)學(xué)生尋找實(shí)例中的共同特征,培養(yǎng)學(xué)生觀察,總結(jié)能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。3、集合的概念,本課的重點(diǎn)。結(jié)合探究中的實(shí)例,讓學(xué)生說(shuō)出集合和元素各是什么?知識(shí)的呈現(xiàn)由抽象到具體進(jìn)一步熟悉元素與集合的概念,讓學(xué)生分清實(shí)際問(wèn)題中的集合和元素為后面學(xué)習(xí)兩者間的關(guān)系做好鋪墊。教師在這一環(huán)節(jié)做好學(xué)習(xí)指導(dǎo),確定的對(duì)象組成的整體叫集合,如果對(duì)象不確定,就不能確定為集合(舉例)加深對(duì)概念的理解。4、熟悉鞏固集合的概念通過(guò)例題,練習(xí)、幫助學(xué)生進(jìn)一步熟悉和理解集合的概念。5、集合的符號(hào)記法,為本節(jié)重點(diǎn)做好鋪墊。6、從實(shí)例入行手,探索元素和集合的關(guān)系,學(xué)生能用文字語(yǔ)言描述,如何用數(shù)學(xué)語(yǔ)言描述,給出元素與集合關(guān)系符號(hào)表示,在這個(gè)環(huán)節(jié)教師適當(dāng)引導(dǎo)學(xué)生積極主動(dòng)參與到知識(shí)逐步形成過(guò)程,便于學(xué)生理解和掌握,落實(shí)本課的重點(diǎn),學(xué)習(xí)指導(dǎo):⑴集合元素的確定。⑵理解兩符號(hào)的含義。7、思考交流本課的重要環(huán)節(jié)在課堂上給學(xué)生提供充分的活動(dòng)時(shí)間和空間。通過(guò)自由舉例,能深化概念。同時(shí)還能提升學(xué)生的分析能力表達(dá)自己見(jiàn)解的能力。8、從所舉的例子中抽象出數(shù)集的概念,并給出常見(jiàn)數(shù)集的記法。9、學(xué)生練習(xí):通過(guò)練習(xí),識(shí)記常見(jiàn)數(shù)集的記法,同時(shí)進(jìn)一步鞏固元素與集合間的關(guān)系。10、知識(shí)的實(shí)際應(yīng)用:?jiǎn)栴}不難,落實(shí)課本能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)的意識(shí)和能力初步培養(yǎng)學(xué)生應(yīng)用集合的眼光觀看世界。11、課堂小節(jié)以學(xué)生小節(jié)為主教師幫助為輔,鞏固所學(xué)知識(shí),幫助學(xué)生認(rèn)識(shí)到要學(xué)會(huì)梳理所學(xué)內(nèi)容,要學(xué)會(huì)總結(jié)反思,使學(xué)生的認(rèn)識(shí)進(jìn)一步升華,培養(yǎng)學(xué)生的鬼納總結(jié)能力。六、評(píng)價(jià)教學(xué)評(píng)價(jià)的及時(shí)能有效調(diào)動(dòng)課堂氣氛,感染學(xué)生的情緒,對(duì)課堂教學(xué)發(fā)揮著積極作用,教學(xué)過(guò)程遵重學(xué)生之間的差異培養(yǎng)學(xué)生應(yīng)用集合的眼光看研究對(duì)象,注重過(guò)程評(píng)價(jià)與多元評(píng)價(jià)將教學(xué)評(píng)價(jià)貫穿于本堂課的每個(gè)教學(xué)環(huán)節(jié)。七、教學(xué)反思1、通過(guò)現(xiàn)實(shí)生活中的實(shí)例,從特殊到一般,在具體感知基礎(chǔ)上得出集合的描述概念,便于學(xué)生理解接受。2、啟發(fā)探究教學(xué),營(yíng)造學(xué)生的學(xué)習(xí)氛圍,培養(yǎng)學(xué)生自主學(xué)習(xí),合作交流的能力。八、板書(shū)設(shè)計(jì)《的概念》教案2目標(biāo):(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及其記法(2)使學(xué)生初步了解“屬于”關(guān)系的意義(3)使學(xué)生初步了解有限集、無(wú)限集、空集的意義重點(diǎn):集合的基本概念教學(xué)過(guò)程:1.引入(1)章頭導(dǎo)言(2)集合論與集合論的創(chuàng)始者-----康托爾(有關(guān)介紹可引用附錄中的內(nèi)容)2.講授新課閱讀教材,并思考下列問(wèn)題:(1)有那些概念?(2)有那些符號(hào)?(3)集合中元素的特性是什么?(4)如何給集合分類(lèi)?(一)有關(guān)概念:1、集合的概念(1)對(duì)象:我們可以感覺(jué)到的客觀存在以及我們思想中的事物或抽象符號(hào),都可以稱(chēng)作對(duì)象。(2)集合:把一些能夠確定的不同的對(duì)象看成一個(gè)整體,就說(shuō)這個(gè)整體是由這些對(duì)象的全體構(gòu)成的集合。(3)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素。集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、……元素通常用小寫(xiě)的拉丁字母表示,如a、b、c……2、元素與集合的關(guān)系(1)屬于:如果a是集合A的元素,就說(shuō)a屬于A,記作a∈A。(2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A,記作要注意“∈”的方向,不能把a(bǔ)∈A顛倒過(guò)來(lái)寫(xiě)。3、集合中元素的特性(1)確定性:給定一個(gè)集合,任何對(duì)象是不是這個(gè)集合的元素是確定的了。(2)互異性:集合中的元素一定是不同的。(3)無(wú)序性:集合中的元素沒(méi)有固定的順序。4、集合分類(lèi)根據(jù)集合所含元素個(gè)屬不同,可把集合分為如下幾類(lèi):(1)把不含任何元素的集合叫做空集Ф(2)含有有限個(gè)元素的集合叫做有限集(3)含有無(wú)窮個(gè)元素的集合叫做無(wú)限集注:應(yīng)區(qū)分符號(hào)的含義5、常用數(shù)集及其表示方法(1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合.記作N。(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集.記作N*或N+。(3)整數(shù)集:全體整數(shù)的集合.記作Z。(4)有理數(shù)集:全體有理數(shù)的集合.記作Q。(5)實(shí)數(shù)集:全體實(shí)數(shù)的集合.記作R。注:(1)自然數(shù)集包括數(shù)0.(2)非負(fù)整數(shù)集內(nèi)排除0的集.記作N*或N+,Q、Z、R等其它數(shù)集內(nèi)排除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*。課堂練習(xí):教材第5頁(yè)練習(xí)A、B。小結(jié):本節(jié)課我們了解集合論的發(fā)展,學(xué)習(xí)了集合的概念及有關(guān)性質(zhì)。課后作業(yè):第十頁(yè)習(xí)題1-1B第3題。《的概念》教案3教學(xué)目的:要求學(xué)生初步理解集合的概念,理解元素與集合間的關(guān)系,掌握集合的表示法,知道常用數(shù)集及其記法。教學(xué)重難點(diǎn):1、元素與集合間的關(guān)系2、集合的表示法教學(xué)過(guò)程:一、集合的概念實(shí)例引入:⑴1~20以內(nèi)的所有質(zhì)數(shù);⑵我國(guó)從1991~XX的XX年內(nèi)所發(fā)射的所有人造衛(wèi)星;⑶金星汽車(chē)廠XX年生產(chǎn)的所有汽車(chē);⑷XX年1月1日之前與我國(guó)建立外交關(guān)系的所有國(guó)家;⑸所有的正方形;⑹黃圖盛中學(xué)XX年9月入學(xué)的高一學(xué)生全體.結(jié)論:一般地,我們把研究對(duì)象統(tǒng)稱(chēng)為元素;把一些元素組成的總體叫做集合,也簡(jiǎn)稱(chēng)集。二、集合元素的.特征(1)確定性:設(shè)a是一個(gè)給定的集合,x是某一個(gè)具體對(duì)象,則或者是a的元素,或者不是a的元素,兩種情況必有一種且只有一種成立。(2)互異性:一個(gè)給定集合中的元素,指屬于這個(gè)集合的互不相同的個(gè)體(對(duì)象),因此,同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素.(3)無(wú)序性:一般不考慮元素之間的順序,但在表示數(shù)列之類(lèi)的特殊集合時(shí),通常按照習(xí)慣的由小到大的數(shù)軸順序書(shū)寫(xiě)練習(xí):判斷下列各組對(duì)象能否構(gòu)成一個(gè)集合⑴2,3,4⑵(2,3),(3,4)⑶三角形⑷2,4,6,8,…⑸1,2,(1,2),{1,2}⑹我國(guó)的小河流⑺方程x2+4=0的所有實(shí)數(shù)解⑻好心的人⑼著名的數(shù)學(xué)家⑽方程x2+2x+1=0的解。三、集合相等構(gòu)成兩個(gè)集合的元素一樣,就稱(chēng)這兩個(gè)集合相等四、集合元素與集合的關(guān)系集合元素與集合的關(guān)系用“屬于”和“不屬于”表示:(1)如果a是集合a的元素,就說(shuō)a屬于a,記作a∈a(2)如果a不是集合a的元素,就說(shuō)a不屬于a,記作a∈a五、常用數(shù)集及其記法非負(fù)整數(shù)集(或自然數(shù)集),記作n;除0的非負(fù)整數(shù)集,也稱(chēng)正整數(shù)集,記作n*或n+;整數(shù)集,記作z;有理數(shù)集,記作q;實(shí)數(shù)集,記作r。練習(xí):(1)已知集合m={a,b,c}中的三個(gè)元素可構(gòu)成某一三角形的三條邊,那么此三角形一定不是()a直角三角形b銳角三角形c鈍角三角形d等腰三角形(2)說(shuō)出集合{1,2}與集合{x=1,y=2}的異同點(diǎn)?六、集合的表示方式(1)列舉法:把集合中的元素一一列舉出來(lái),寫(xiě)在大括號(hào)內(nèi);(2)描述法:用集合所含元素的共同特征表示的方法.(具體方法)例1、用列舉法表示下列集合:(1)小于10的所有自然數(shù)組成的集合;(2)方程x2=x的所有實(shí)數(shù)根組成的集合;(3)由1~20以內(nèi)的所有質(zhì)數(shù)組成。例2、試分別用列舉法和描述法表示下列集合:(1)由大于10小于20的的所有整數(shù)組成的集合;(2)方程x2-2=2的所有實(shí)數(shù)根組成的集合.注意:(1)描述法表示集合應(yīng)注意集合的代表元素(2)只要不引起誤解集合的代表元素也可省略。七、小結(jié)集合的概念、表示;集合元素與集合間的關(guān)系;常用數(shù)集的記法。八、作業(yè)《的概念》教案4學(xué)生進(jìn)入高中,學(xué)習(xí)數(shù)學(xué)的第一課,就是集合。集合不僅與高中數(shù)學(xué)的許多內(nèi)容有著緊密的聯(lián)系,而且已經(jīng)滲透到自然科學(xué)的眾多領(lǐng)域,應(yīng)用十分廣泛。掌握好集合的知識(shí)既是數(shù)學(xué)學(xué)習(xí)本身的需要,也是全面提高數(shù)學(xué)素養(yǎng)的一個(gè)必不可少的內(nèi)容。而由于集合單元的概念抽象,符號(hào)術(shù)語(yǔ)多,研究方法跟學(xué)習(xí)初中數(shù)學(xué)時(shí)有著明顯的差異,致使部分同學(xué)初學(xué)集合時(shí),感到難以適應(yīng),常常因?yàn)檫@樣那樣的原因造成解題失誤,形成思維障礙,甚至影響整個(gè)高中數(shù)學(xué)的學(xué)習(xí)。為了幫助同學(xué)們解決這一問(wèn)題,在集合教學(xué)中值得注意的幾個(gè)事項(xiàng)一、準(zhǔn)確地把握集合的概念,熟練地運(yùn)用集合與集合的關(guān)系解決具體問(wèn)題概念抽象、符號(hào)術(shù)語(yǔ)多是集合單元的一個(gè)顯著特點(diǎn),例如交集、并集、補(bǔ)集的概念及其表示方法,集合與元素的關(guān)系及其表示方法,集合與集合的關(guān)系及其表示方法,子集、真子集和集合相等的定義等等。這些概念、關(guān)系和表示方法,都可以作為求解集合問(wèn)題的依據(jù)、出發(fā)點(diǎn)甚至是突破口。因此,要想學(xué)生學(xué)好集合的內(nèi)容,就必須在準(zhǔn)確地把握集合的概念,熟練地運(yùn)用集合與集合的關(guān)系解決具體問(wèn)題上下功夫。二、注意弄清集合元素的性質(zhì),學(xué)會(huì)運(yùn)用元素分析法審視集合的有關(guān)問(wèn)題眾所周知,集合可以看成是一些對(duì)象的全體,其中的每一個(gè)對(duì)象叫做這個(gè)集合的元素。集合中的元素具有“三性”:(1)確定性:集合中的元素應(yīng)該是確定的,不能模棱兩可;(2)互異性:集合中的元素應(yīng)該是互不相同的,相同的元素在集合中只能算作一個(gè);(3)無(wú)序性:集合中的元素是無(wú)次序關(guān)系的。集合的關(guān)系、集合的運(yùn)算等等都是從元素的角度予以定義的。因此,求解集合問(wèn)題時(shí),抓住元素的特征進(jìn)行分析,就相當(dāng)于牽牛抓住了牛鼻子。三、體會(huì)集合問(wèn)題中蘊(yùn)含的數(shù)學(xué)思想方法,掌握解決集合問(wèn)題的基本規(guī)律布魯納說(shuō)過(guò),掌握數(shù)學(xué)思想可使得數(shù)學(xué)更容易理解和記憶,領(lǐng)會(huì)數(shù)學(xué)思想是通向遷移大道的“光明之路”。集合單

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論