2024屆山東省濟南市育英中學中考五模數(shù)學試題含解析_第1頁
2024屆山東省濟南市育英中學中考五模數(shù)學試題含解析_第2頁
2024屆山東省濟南市育英中學中考五模數(shù)學試題含解析_第3頁
2024屆山東省濟南市育英中學中考五模數(shù)學試題含解析_第4頁
2024屆山東省濟南市育英中學中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆山東省濟南市育英中學中考五模數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.據(jù)調(diào)查,某班20為女同學所穿鞋子的尺碼如表所示,尺碼(碼)3435363738人數(shù)251021則鞋子尺碼的眾數(shù)和中位數(shù)分別是()A.35碼,35碼 B.35碼,36碼 C.36碼,35碼 D.36碼,36碼2.如圖,AB是半圓的直徑,O為圓心,C是半圓上的點,D是上的點,若∠BOC=40°,則∠D的度數(shù)為()A.100° B.110° C.120° D.130°3.計算的結(jié)果是()A.1 B.﹣1 C.1﹣x D.4.若2<<3,則a的值可以是()A.﹣7 B. C. D.125.計算(ab2)3的結(jié)果是()A.a(chǎn)b5 B.a(chǎn)b6 C.a(chǎn)3b5 D.a(chǎn)3b66.如圖,直線被直線所截,,下列條件中能判定的是()A. B. C. D.7.一球鞋廠,現(xiàn)打折促銷賣出330雙球鞋,比上個月多賣10%,設(shè)上個月賣出x雙,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=3308.如圖,在△ABC中,EF∥BC,,S四邊形BCFE=8,則S△ABC=()A.9 B.10 C.12 D.139.一個正方形花壇的面積為7m2,其邊長為am,則a的取值范圍為()A.0<a<1 B.l<a<2 C.2<a<3 D.3<a<410.數(shù)軸上有A,B,C,D四個點,其中絕對值大于2的點是()A.點A B.點B C.點C D.點D二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,將邊長為的正方形ABCD繞點A逆時針方向旋轉(zhuǎn)30°后得到正方形A′B′C′D′,則圖中陰影部分面積為_______平方單位.12.為了了解某班數(shù)學成績情況,抽樣調(diào)查了13份試卷成績,結(jié)果如下:3個140分,4個135分,2個130分,2個120分,1個100分,1個80分.則這組數(shù)據(jù)的中位數(shù)為______分.13.若n邊形的內(nèi)角和是它的外角和的2倍,則n=.14.如圖,在直角坐標系中,點A(2,0),點B(0,1),過點A的直線l垂直于線段AB,點P是直線l上一動點,過點P作PC⊥x軸,垂足為C,把△ACP沿AP翻折,使點C落在點D處,若以A,D,P為頂點的三角形與△ABP相似,則所有滿足此條件的點P的坐標為___________________________.15.ABCD為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止,點Q以2cm/s的速度向D移動,P、Q兩點從出發(fā)開始到__________秒時,點P和點Q的距離是10cm.16.甲、乙兩個機器人檢測零件,甲比乙每小時多檢測20個,甲檢測300個比乙檢測200個所用的時間少,若設(shè)甲每小時檢測個,則根據(jù)題意,可列出方程:__________.三、解答題(共8題,共72分)17.(8分)如圖,直線y=﹣x+2與反比例函數(shù)(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D.求a,b的值及反比例函數(shù)的解析式;若點P在直線y=﹣x+2上,且S△ACP=S△BDP,請求出此時點P的坐標;在x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標;若不存在,說明理由.18.(8分)湯姆斯杯世界男子羽毛球團體賽小組賽比賽規(guī)則:兩隊之間進行五局比賽,其中三局單打,兩局雙打,五局比賽必須全部打完,贏得三局及以上的隊獲勝.假如甲,乙兩隊每局獲勝的機會相同.若前四局雙方戰(zhàn)成2:2,那么甲隊最終獲勝的概率是__________;現(xiàn)甲隊在前兩局比賽中已取得2:0的領(lǐng)先,那么甲隊最終獲勝的概率是多少?19.(8分)如圖,在⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點F,在AB的延長線上有點E,且EF=ED.(1)求證:DE是⊙O的切線;(2)若tanA=,探究線段AB和BE之間的數(shù)量關(guān)系,并證明;(3)在(2)的條件下,若OF=1,求圓O的半徑.20.(8分)“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)根據(jù)所給信息,解答以下問題:(1)在扇形統(tǒng)計圖中,C對應(yīng)的扇形的圓心角是度;(2)補全條形統(tǒng)計圖;(3)所抽取學生的足球運球測試成績的中位數(shù)會落在等級;(4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?21.(8分)先化簡,再求值:,其中x=﹣1.22.(10分)如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O經(jīng)過AC的中點D,E為⊙O上的一點,連接DE,BE,DE與AB交于點F.求證:BC為⊙O的切線;若F為OA的中點,⊙O的半徑為2,求BE的長.23.(12分)如圖,足球場上守門員在處開出一高球,球從離地面1米的處飛出(在軸上),運動員乙在距點6米的處發(fā)現(xiàn)球在自己頭的正上方達到最高點,距地面約4米高,球落地后又一次彈起.據(jù)實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.求足球開始飛出到第一次落地時,該拋物線的表達式.足球第一次落地點距守門員多少米?(取)運動員乙要搶到第二個落點,他應(yīng)再向前跑多少米?24.如圖,在由邊長為1個單位長度的小正方形組成的10×10網(wǎng)格中,已知點O,A,B均為網(wǎng)格線的交點.在給定的網(wǎng)格中,以點O為位似中心,將線段AB放大為原來的2倍,得到線段(點A,B的對應(yīng)點分別為).畫出線段;將線段繞點逆時針旋轉(zhuǎn)90°得到線段.畫出線段;以為頂點的四邊形的面積是個平方單位.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).【詳解】數(shù)據(jù)36出現(xiàn)了10次,次數(shù)最多,所以眾數(shù)為36,一共有20個數(shù)據(jù),位置處于中間的數(shù)是:36,36,所以中位數(shù)是(36+36)÷2=36.故選D.【點睛】考查中位數(shù)與眾數(shù),掌握眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù)是解題的關(guān)鍵.2、B【解析】

根據(jù)同弧所對的圓周角是圓心角度數(shù)的一半即可解題.【詳解】∵∠BOC=40°,∠AOB=180°,∴∠BOC+∠AOB=220°,∴∠D=110°(同弧所對的圓周角是圓心角度數(shù)的一半),故選B.【點睛】本題考查了圓周角和圓心角的關(guān)系,屬于簡單題,熟悉概念是解題關(guān)鍵.3、B【解析】

根據(jù)同分母分式的加減運算法則計算可得.【詳解】解:原式====-1,故選B.【點睛】本題主要考查分式的加減法,解題的關(guān)鍵是熟練掌握同分母分式的加減運算法則.4、C【解析】

根據(jù)已知條件得到4<a-2<9,由此求得a的取值范圍,易得符合條件的選項.【詳解】解:∵2<<3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范圍是6<a<1.觀察選項,只有選項C符合題意.故選C.【點睛】考查了估算無理數(shù)的大小,估算無理數(shù)大小要用夾逼法.5、D【解析】試題分析:根據(jù)積的乘方的性質(zhì)進行計算,然后直接選取答案即可.試題解析:(ab2)3=a3?(b2)3=a3b1.故選D.考點:冪的乘方與積的乘方.6、C【解析】試題解析:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本選項正確;D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;故選C.7、D【解析】解:設(shè)上個月賣出x雙,根據(jù)題意得:(1+10%)x=1.故選D.8、A【解析】

由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面積比等于相似比的平方,即可求得答案.【詳解】∵,∴.又∵EF∥BC,∴△AEF∽△ABC.∴.∴1S△AEF=S△ABC.又∵S四邊形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S△ABC=1.故選A.9、C【解析】

先根據(jù)正方形的面積公式求邊長,再根據(jù)無理數(shù)的估算方法求取值范圍.【詳解】解:∵一個正方形花壇的面積為,其邊長為,則a的取值范圍為:.故選:C.【點睛】此題重點考查學生對無理數(shù)的理解,會估算無理數(shù)的大小是解題的關(guān)鍵.10、A【解析】

根據(jù)絕對值的含義和求法,判斷出絕對值等于2的數(shù)是﹣2和2,據(jù)此判斷出絕對值等于2的點是哪個點即可.【詳解】解:∵絕對值等于2的數(shù)是﹣2和2,∴絕對值等于2的點是點A.故選A.【點睛】此題主要考查了絕對值的含義和求法,要熟練掌握,解答此題的關(guān)鍵要明確:①互為相反數(shù)的兩個數(shù)絕對值相等;②絕對值等于一個正數(shù)的數(shù)有兩個,絕對值等于0的數(shù)有一個,沒有絕對值等于負數(shù)的數(shù).③有理數(shù)的絕對值都是非負數(shù).二、填空題(本大題共6個小題,每小題3分,共18分)11、6﹣2【解析】

由旋轉(zhuǎn)角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;設(shè)B′C′和CD的交點是O,連接OA,構(gòu)造全等三角形,用S陰影部分=S正方形﹣S四邊形AB′OD,計算面積即可.【詳解】解:設(shè)B′C′和CD的交點是O,連接OA,∵AD=AB′,AO=AO,∠D=∠B′=90°,∴Rt△ADO≌Rt△AB′O,∴∠OAD=∠OAB′=30°,∴OD=OB′=,S四邊形AB′OD=2S△AOD=2××=2,∴S陰影部分=S正方形﹣S四邊形AB′OD=6﹣2.【點睛】此題的重點是能夠計算出四邊形的面積.注意發(fā)現(xiàn)全等三角形.12、1【解析】

∵13份試卷成績,結(jié)果如下:3個140分,4個1分,2個130分,2個120分,1個100分,1個80分,∴第7個數(shù)是1分,∴中位數(shù)為1分,故答案為1.13、6【解析】此題涉及多邊形內(nèi)角和和外角和定理多邊形內(nèi)角和=180(n-2),外角和=360o所以,由題意可得180(n-2)=2×360o解得:n=614、【解析】∵點A(2,0),點B(0,1),∴OA=2,OB=1,.∵l⊥AB,∴∠PAC+OAB=90°.∵∠OBA+∠OAB=90°,∴∠OBA=∠PAC.∵∠AOB=∠ACP,∴△ABO∽△PAC,.設(shè)AC=m,PC=2m,.當點P在x軸的上方時,由得,,,,PC=1,,由得,,∴m=2,∴AC=2,PC=4,∴OC=2+2=4,∴P(4,4).當點P在x軸的下方時,由得,,,,PC=1,,由得,,∴m=2,∴AC=2,PC=4,∴OC=2-2=0,∴P(0,4).所以P點坐標為或(4,4)或或(0,4)【點睛】本題考察了相似三角形的判定,相似三角形的性質(zhì),平面直角坐標系點的坐標及分類討論的思想.在利用相似三角形的性質(zhì)列比例式時,要找好對應(yīng)邊,如果對應(yīng)邊不確定,要分類討論.因點P在x軸上方和下方得到的結(jié)果也不一樣,所以要分兩種情況求解.請在此填寫本題解析!15、或【解析】

作PH⊥CD,垂足為H,設(shè)運動時間為t秒,用t表示線段長,用勾股定理列方程求解.【詳解】設(shè)P,Q兩點從出發(fā)經(jīng)過t秒時,點P,Q間的距離是10cm,作PH⊥CD,垂足為H,則PH=AD=6,PQ=10,∵DH=PA=3t,CQ=2t,∴HQ=CD?DH?CQ=|16?5t|,由勾股定理,得解得即P,Q兩點從出發(fā)經(jīng)過1.6或4.8秒時,點P,Q間的距離是10cm.故答案為或.【點睛】考查矩形的性質(zhì),勾股定理,解一元二次方程等,表示出HQ=CD?DH?CQ=|16?5t|是解題的關(guān)鍵.16、【解析】【分析】若設(shè)甲每小時檢測個,檢測時間為,乙每小時檢測個,檢測時間為,根據(jù)甲檢測300個比乙檢測200個所用的時間少,列出方程即可.【解答】若設(shè)甲每小時檢測個,檢測時間為,乙每小時檢測個,檢測時間為,根據(jù)題意有:.故答案為【點評】考查分式方程的應(yīng)用,解題的關(guān)鍵是找出題目中的等量關(guān)系.三、解答題(共8題,共72分)17、(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).【解析】

(1)利用點在直線上,將點的坐標代入直線解析式中求解即可求出a,b,最后用待定系數(shù)法求出反比例函數(shù)解析式;(2)設(shè)出點P坐標,用三角形的面積公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3?n|,進而建立方程求解即可得出結(jié)論;(3)設(shè)出點M坐標,表示出MA2=(m+1)2+9,MB2=(m?3)2+1,AB2=32,再三種情況建立方程求解即可得出結(jié)論.【詳解】(1)∵直線y=-x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點,∴-a+2=3,-3+2=b,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵點A(-1,3)在反比例函數(shù)y=上,∴k=-1×3=-3,∴反比例函數(shù)解析式為y=;(2)設(shè)點P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=AC×|xP?xA|=×3×|n+1|,S△BDP=BD×|xB?xP|=×1×|3?n|,∵S△ACP=S△BDP,∴×3×|n+1|=×1×|3?n|,∴n=0或n=?3,∴P(0,2)或(?3,5);(3)設(shè)M(m,0)(m>0),∵A(?1,3),B(3,?1),∴MA2=(m+1)2+9,MB2=(m?3)2+1,AB2=(3+1)2+(?1?3)2=32,∵△MAB是等腰三角形,∴①當MA=MB時,∴(m+1)2+9=(m?3)2+1,∴m=0,(舍)②當MA=AB時,∴(m+1)2+9=32,∴m=?1+或m=?1?(舍),∴M(?1+,0)③當MB=AB時,(m?3)2+1=32,∴m=3+或m=3?(舍),∴M(3+,0)即:滿足條件的M(?1+,0)或(3+,0).【點睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,三角形的面積的求法,等腰三角形的性質(zhì),用方程的思想解決問題是解本題的關(guān)鍵.18、(1);(2)【解析】分析:(1)直接利用概率公式求解;(2)畫樹狀圖展示所有8種等可能的結(jié)果數(shù),再找出甲至少勝一局的結(jié)果數(shù),然后根據(jù)概率公式求.詳解:(1)甲隊最終獲勝的概率是;(2)畫樹狀圖為:共有8種等可能的結(jié)果數(shù),其中甲至少勝一局的結(jié)果數(shù)為7,所以甲隊最終獲勝的概率=.點睛:本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.19、(1)答案見解析;(2)AB=1BE;(1)1.【解析】試題分析:(1)先判斷出∠OCF+∠CFO=90°,再判斷出∠OCF=∠ODF,即可得出結(jié)論;(2)先判斷出∠BDE=∠A,進而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出結(jié)論;(1)設(shè)BE=x,則DE=EF=2x,AB=1x,半徑OD=x,進而得出OE=1+2x,最后用勾股定理即可得出結(jié)論.試題解析:(1)證明:連結(jié)OD,如圖.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵點D在⊙O上,∴DE是⊙O的切線;(2)線段AB、BE之間的數(shù)量關(guān)系為:AB=1BE.證明如下:∵AB為⊙O直徑,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴.∵Rt△ABD中,tanA==,∴=,∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=1BE;(1)設(shè)BE=x,則DE=EF=2x,AB=1x,半徑OD=x.∵OF=1,∴OE=1+2x.在Rt△ODE中,由勾股定理可得:(x)2+(2x)2=(1+2x)2,∴x=﹣(舍)或x=2,∴圓O的半徑為1.點睛:本題是圓的綜合題,主要考查了切線的判定和性質(zhì),等腰三角形的性質(zhì),銳角三角函數(shù),相似三角形的判定和性質(zhì),勾股定理,判斷出△EBD∽△EDA是解答本題的關(guān)鍵.20、(1)117(2)見解析(3)B(4)30【解析】

(1)先根據(jù)B等級人數(shù)及其百分比求得總?cè)藬?shù),總?cè)藬?shù)減去其他等級人數(shù)求得C等級人數(shù),繼而用360°乘以C等級人數(shù)所占比例即可得;(2)根據(jù)以上所求結(jié)果即可補全圖形;(3)根據(jù)中位數(shù)的定義求解可得;(4)總?cè)藬?shù)乘以樣本中A等級人數(shù)所占比例可得.【詳解】解:(1)∵總?cè)藬?shù)為18÷45%=40人,∴C等級人數(shù)為40﹣(4+18+5)=13人,則C對應(yīng)的扇形的圓心角是360°×=117°,故答案為117;(2)補全條形圖如下:(3)因為共有40個數(shù)據(jù),其中位數(shù)是第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在B等級,所以所抽取學生的足球運球測試成績的中位數(shù)會落在B等級,故答案為B.(4)估計足球運球測試成績達到A級的學生有300×=30人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?1、-2.【解析】

根據(jù)分式的運算法化解即可求出答案.【詳解】解:原式=,當x=﹣1時,原式=.【點睛】熟練運用分式的運算法則.22、(1)證明見解析;(2)【解析】

(1)連接BD,由圓周角性質(zhì)定理和等腰三角形的性質(zhì)以及已知條件證明∠ABC=90°即可;(2)連接OD,根據(jù)已知條件求得AD、DF的長,再證明△AFD∽△EFB,然后

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論