版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第六章定積分的應(yīng)用6.1定積分的元素法6.2定積分在幾何學(xué)中的應(yīng)用目錄二、定積分在幾何上學(xué)中的應(yīng)用——平面圖形的面積一、定積分的元素法——微元法利用微元法解決:定積分在幾何上的應(yīng)用定積分在物理上的應(yīng)用自學(xué)一、微元法回顧曲邊梯形求面積的問題abxyo引例曲邊梯形的計算問題?……++記作面積微元即1、什么問題可以用定積分解決?1)所求量
U是與區(qū)間[a,b]
有關(guān)的2)U
對區(qū)間[a,b]
具有可加性
,即可通過若干小區(qū)定積分定義一個整體量;求和獲得:間3)記2、如何應(yīng)用定積分解決問題?第一步根據(jù)問題的具體情況,選取一個變量例x為積分變量,并確定它的變化區(qū)間如[a,b].第二步設(shè)想把區(qū)間[a,b]分成若干小區(qū)間,取其任一區(qū)間[x,x+dx],求出局部量的近似值U的微元第三步以所求量U的微元dU作為積分表達(dá)式,在區(qū)間[a,b]作定積分2、如何應(yīng)用定積分解決問題?這種分析方法成為微元法微元的幾何形狀常取為:條,帶,段,環(huán),扇,片,殼等*二、平面圖形的面積面積元素
由連續(xù)曲線y=f(x)(f(x)
0),直線x
=
a,x
=
b(a
<
b)及
x
軸所圍成的平面圖形的面積面積微元法:yo*若f(
x
)有正有負(fù),則曲邊梯形面積為xyoab*直角坐標(biāo)系:X—型平面圖形的面積xyoab面積元素:所圍成的平面圖形的面積:*cxyoab一般地,*直角坐標(biāo)系:Y—型平面圖形的面積dcxyo及y軸圍成的平面圖形的面積為xyodc一般地,*圍成的平面圖形的面積為dcxyodcxyo一般地,*例1
*解選x為積分變量,例1
由得交點例2
解由對稱性知,例2
總面積等于第一象限部分面積的4倍,*利用圓面積解由對稱性知,例2
總面積等于第一象限部分面積的4倍,xya*例3
*解兩曲線的交點例3
此法麻煩。*此題選y
為積分變量比較好,選擇積分變量的原則:
(1)盡量少分塊;(2)積分容易.*例4
圍成的平面圖形的面積.
*例4
圍成的平面圖形的面積.
xoy解
由對稱性,交點*例5*例5解求曲線與以及軸圍成的圖形面積.作答正常使用主觀題需2.0以上版本雨課堂主觀題10分作答正常使用主觀題需2.0以上版本雨課堂求曲線與直線以及圍成的圖形面積.主觀題10分極坐標(biāo)系:求由曲線及圍成的曲邊扇形的面積.在區(qū)間上任取小區(qū)間則對應(yīng)該小區(qū)間上曲邊扇形面積的近似值為所求曲邊扇形的面積為
某些平面圖形,用極坐標(biāo)來計算它們的面積會比較方便,而用直角坐標(biāo)卻往往非常繁瑣.對應(yīng)
從0變例5.計算阿基米德螺線解:到2
所圍圖形面積.作答正常使用主觀題需2.0以上版本雨課堂
主觀題10分
第六章定積分的應(yīng)用6.2定積分在幾何學(xué)中的應(yīng)用(二)目錄一、定積分在幾何上學(xué)中的應(yīng)用——旋轉(zhuǎn)體的體積二、平面曲線的弧長一、旋轉(zhuǎn)體的體積2圓柱圓錐圓臺最基本的情形是曲邊梯形繞x軸或y軸旋轉(zhuǎn)的情形?!粜D(zhuǎn)體的定義旋轉(zhuǎn)體的定義:旋轉(zhuǎn)體就是由一個平面圖形饒這平面內(nèi)一條直線旋轉(zhuǎn)一周而成的立體.這直線叫做旋轉(zhuǎn)軸。可選取適當(dāng)坐標(biāo)系,使旋轉(zhuǎn)軸為x軸或y軸xyo旋轉(zhuǎn)體的體積為取積分變量為xoxyP(h,r)◆旋轉(zhuǎn)體的體積計算公式例1連接坐標(biāo)原點O及點P(h,r)的直線,直線x=h及x軸圍成一個直角三角形,將它繞x軸旋轉(zhuǎn)構(gòu)成一個底半徑為r,高為h的圓錐,計算圓錐的體積。解:如圖所示直線OP的方程為,
所求體積為
例2計算由曲線y=x2
與x=y2
所圍成的平面圖形繞y
軸旋轉(zhuǎn)一周而成的立體的體積。例2計算由曲線y=x2
與x=y2
所圍成的平面圖形繞y
軸旋轉(zhuǎn)一周而成的立體的體積。解:如圖所示V2V1作答正常使用主觀題需2.0以上版本雨課堂繞x軸旋轉(zhuǎn)一周◆練習(xí):寫出下列旋轉(zhuǎn)體體積的定積分表達(dá)式繞x軸旋轉(zhuǎn)一周可為此題添加文本、圖片、公式等解析,且需將內(nèi)容全部放在本區(qū)域內(nèi)。正常使用需3.0以上版本此處添加答案解析答案解析主觀題10分作答正常使用主觀題需2.0以上版本雨課堂◆練習(xí):寫出下列旋轉(zhuǎn)體體積的定積分表達(dá)式可為此題添加文本、圖片、公式等解析,且需將內(nèi)容全部放在本區(qū)域內(nèi)。正常使用需3.0以上版本此處添加答案解析答案解析軸繞y軸旋轉(zhuǎn)一周軸繞y軸旋轉(zhuǎn)一周主觀題10分21例3:寫出下列旋轉(zhuǎn)體體積的定積分表達(dá)式繞y軸旋轉(zhuǎn)一周的體積。21例3:寫出下列旋轉(zhuǎn)體體積的定積分表達(dá)式繞y軸旋轉(zhuǎn)一周的體積。二、平面曲線的弧長定義:
若在弧AB上任意作內(nèi)接折線
,當(dāng)折線段的最大邊長→0時,折線的長度趨向于一個確定的極限
,此極限為曲線弧AB的弧長,即并稱此曲線弧為可求長的.定理:
任意光滑曲線弧都是可求長的.則稱(1)曲線弧由直角坐標(biāo)方程給出:弧長元素(弧微分):以對應(yīng)小切線段長代替小弧段長因此所求弧長(2)曲線弧由參數(shù)方程給出:弧長元素(弧微分):因此所求弧長機動目錄上頁下頁返回結(jié)束(3)曲線弧由極坐標(biāo)方程給出:因此所求弧長則得弧長元素(弧微分):機動目錄上頁下頁返回結(jié)束一段弧的長度.相應(yīng)x于從a到b的例4
計算曲線解:一段弧的長度.相應(yīng)x于從a到b的例4
計算曲線例5.
計算擺線一拱的弧長.例5.
計算擺線一拱的弧長.解:作答正常使用主觀題需2.0以上版
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026河北保定雄安人才發(fā)展集團(tuán)實習(xí)生招聘5人備考題庫有完整答案詳解
- 2026廣東佛山禪城區(qū)玫瑰小學(xué)招聘合同制教師1人備考考試試題及答案解析
- 2026北京十一安和學(xué)校招聘備考題庫附答案詳解
- 2026湖北武漢市公立初級中學(xué)招聘2人考試參考試題及答案解析
- 2026廣東貴州中心放療科陳明教授課題組自聘技術(shù)員招聘1人備考題庫及完整答案詳解1套
- 2025年龍井市面向委培生和定向生招聘員額崗位(5人)備考考試試題及答案解析
- 2026貴州安航機械制造有限公司招聘備考考試題庫及答案解析
- 2026年上半年云南特殊教育職業(yè)學(xué)院招聘人員備考題庫(6人)及答案詳解(奪冠系列)
- 2026上半年貴州事業(yè)單位聯(lián)考畢節(jié)市七星關(guān)區(qū)招聘377人備考題庫有答案詳解
- 2026江蘇南京大學(xué)海外教育學(xué)院辦公室文員招聘備考考試題庫及答案解析
- (二調(diào))武漢市2025屆高中畢業(yè)生二月調(diào)研考試 生物試卷(含標(biāo)準(zhǔn)答案)
- 2024-2025學(xué)年天津市和平區(qū)高三上學(xué)期1月期末英語試題(解析版)
- 管理人員應(yīng)懂財務(wù)知識
- ISO9001-2015質(zhì)量管理體系版標(biāo)準(zhǔn)
- 翻建房屋四鄰協(xié)議書范本
- 打樁承包合同
- 輸煤棧橋彩鋼板更換施工方案
- 農(nóng)田水利施工安全事故應(yīng)急預(yù)案
- 某電廠380v開關(guān)柜改造電氣施工方案
- 江西省景德鎮(zhèn)市2024-2025學(xué)年七年級上學(xué)期期中地理試卷(含答案)
- 財務(wù)經(jīng)理年終總結(jié)2024
評論
0/150
提交評論