版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
因式分解教學(xué)設(shè)計(jì)人教版第第頁因式分解教學(xué)設(shè)計(jì)人教版(經(jīng)典版)編制人:__________________審核人:__________________審批人:__________________編制學(xué)校:__________________編制時(shí)間:____年____月____日序言下載提示:該文檔是本店鋪精心編制而成的,希望大家下載后,能夠幫助大家解決實(shí)際問題。文檔下載后可定制修改,請(qǐng)根據(jù)實(shí)際需要進(jìn)行調(diào)整和使用,謝謝!并且,本店鋪為大家提供各種類型的經(jīng)典范文,如幼兒教案、小學(xué)教案、中學(xué)教案、教學(xué)活動(dòng)、評(píng)語、寄語、發(fā)言稿、工作計(jì)劃、工作總結(jié)、心得體會(huì)、其他范文等等,想了解不同范文格式和寫法,敬請(qǐng)關(guān)注!Downloadtips:Thisdocumentiscarefullycompiledbythiseditor.Ihopethatafteryoudownloadit,itcanhelpyousolvepracticalproblems.Thedocumentcanbecustomizedandmodifiedafterdownloading,pleaseadjustanduseitaccordingtoactualneeds,thankyou!Inaddition,thisshopprovidesyouwithvarioustypesofclassicsampleessays,suchaspreschoollessonplans,elementaryschoollessonplans,middleschoollessonplans,teachingactivities,comments,messages,speechdrafts,workplans,worksummary,experience,andothersampleessays,etc.IwanttoknowPleasepayattentiontothedifferentformatandwritingstylesofsampleessays!因式分解教學(xué)設(shè)計(jì)人教版全文共1頁,當(dāng)前為第1頁。因式分解教學(xué)設(shè)計(jì)人教版全文共1頁,當(dāng)前為第1頁。因式分解教學(xué)設(shè)計(jì)人教版因式分解教學(xué)設(shè)計(jì)人教版全文共2頁,當(dāng)前為第2頁。
這是因式分解教學(xué)設(shè)計(jì)人教版,是優(yōu)秀的數(shù)學(xué)教案文章,供老師家長(zhǎng)們參考學(xué)習(xí)。
因式分解教學(xué)設(shè)計(jì)人教版第1篇
【設(shè)計(jì)主題】本微課選自人教版八年級(jí),教學(xué)內(nèi)容是讓學(xué)生復(fù)習(xí)因式分解基本方法。本微課通過典型例題,從提取公因式,到完全平方公式,平方差公式,層層遞進(jìn),讓學(xué)生能夠通過本微課,學(xué)會(huì)如何進(jìn)行多項(xiàng)式的因式分解,總結(jié)出相應(yīng)的規(guī)律。最后練習(xí)進(jìn)行檢測(cè),達(dá)到掌握因式分解法的基本方法。
【教學(xué)背景】
1.學(xué)情分析:授課對(duì)象為八年級(jí)上的學(xué)生,以前學(xué)習(xí)多項(xiàng)式運(yùn)算,現(xiàn)在進(jìn)行它的`相逆過程。對(duì)部分學(xué)生有一定難度。
2.教學(xué)情況分析:為了讓學(xué)生能夠通過本微課掌握因式分解基本方法,通過相應(yīng)的變形整理達(dá)到可以提取公因式和運(yùn)用公式法進(jìn)行因式分解。超過四項(xiàng)的多項(xiàng)式是學(xué)生學(xué)習(xí)難點(diǎn),如何進(jìn)行分組是關(guān)鍵。
【教學(xué)目標(biāo)】
1.能運(yùn)用提取公因式進(jìn)行因式分解;
2.能夠正確使用平方差和完全平方公式進(jìn)行因式分解;
3.能夠?qū)λ捻?xiàng)及以上的多項(xiàng)式進(jìn)行分組。
【學(xué)習(xí)任務(wù)】
通過例題一鞏固提取公因式進(jìn)行因式分解;
通過例題二鞏固應(yīng)用公式法進(jìn)行因式分解,并要求每個(gè)因式不能再進(jìn)行因式分解為止;
歸納總結(jié)因式分解方法:一提,二套,三分組,四要分解到各個(gè)因式不能再進(jìn)行因式分解為止
注意事項(xiàng):兩點(diǎn)
舉一反三,鞏固練習(xí)
對(duì)各題進(jìn)行講解,達(dá)到學(xué)習(xí)目的。
【教學(xué)小結(jié)】
通過本微課,學(xué)生能夠?qū)σ蚴椒纸庵R(shí)進(jìn)行歸納總結(jié)并運(yùn)用此方法來解決問題。對(duì)學(xué)生因式分解由易到難,并重點(diǎn)對(duì)分組進(jìn)行大量的練習(xí),以達(dá)到知識(shí)技能的提升。學(xué)生在課后還需要通過練習(xí)加以鞏固復(fù)習(xí),才能做到應(yīng)用分組,提取公因式,應(yīng)用公式法進(jìn)行因式分解。
因式分解教學(xué)設(shè)計(jì)人教版第2篇
初中因式分解教案
一、案例背景
現(xiàn)代教育理論認(rèn)為,教師為主導(dǎo),學(xué)生為主體,教師應(yīng)當(dāng)充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)用心性,使之主動(dòng)地探索、研究,讓學(xué)生都參與到課堂活動(dòng)中,透過學(xué)生自我感受,培養(yǎng)學(xué)生觀察、分析、歸納的潛力,逐步提高自學(xué)潛力,獨(dú)立思考的潛力,發(fā)現(xiàn)問題和解決問題的潛力,逐漸養(yǎng)成良好的個(gè)性品質(zhì)。
因式分解是代數(shù)式的一種重要恒等變形。它是學(xué)習(xí)分式的基礎(chǔ),因式分解教學(xué)設(shè)計(jì)人教版全文共3頁,當(dāng)前為第3頁。又在恒等變形、代數(shù)式的運(yùn)算、解方程、函數(shù)中有廣泛的應(yīng)用。
二、案例分析
教學(xué)過程設(shè)計(jì)
(一)『情境引入』
情境一:如何計(jì)算375X2。8+375X4。9+375X2。3你是怎樣想的
問題:為什么375X2。8+375X4。9+375X2。3能夠?qū)懗?75X(2。4+4。9+2。3)依據(jù)是什么
【評(píng)析】:(1)、復(fù)習(xí)舊知,加深記憶,同時(shí)為下面的學(xué)習(xí)作鋪墊。
(2)、學(xué)生對(duì)這樣的問題有興趣,能迅速找出一些不同的速算方法,很快想出乘法分配律的逆向變形,設(shè)置這樣的情境,由數(shù)推廣到式,效率較高。還為新課資料的學(xué)習(xí)創(chuàng)設(shè)了良好的情緒和氛圍。
情境二:分析比較
把單項(xiàng)式乘多項(xiàng)式的乘法法則
a(b+c+d)=ab+ac+ad①
反過來,就得到
ab+ac+ad=a(b+c+d)②
思考(1)你是怎樣認(rèn)識(shí)①式和②式之間的關(guān)系的
(2)②式左邊的多項(xiàng)式的每一項(xiàng)有相同的因式嗎你能說出這個(gè)因式嗎
【評(píng)析】:(1)、探索因式分解的方法,事實(shí)上是對(duì)整式乘法的再認(rèn)識(shí),因此,在教學(xué)過程中,教師要借助學(xué)生已有的整式乘法運(yùn)因式分解教學(xué)設(shè)計(jì)人教版全文共4頁,當(dāng)前為第4頁。算的基礎(chǔ),給他們留下充分探索與交流的時(shí)間和空間,讓他們經(jīng)歷從整式乘法到因式分解的這種互逆變形的過程。
(2)、本題注重培養(yǎng)學(xué)生觀察、分析、歸納的潛力,并向?qū)W生滲透比較、類比的數(shù)學(xué)思想方法。
(二)『探究因式分解』
1、認(rèn)識(shí)公因式
(1)、【概念1】:多項(xiàng)式ab+ac+ad的各項(xiàng)ab、ac、ad都內(nèi)含相同的因式a,稱為多項(xiàng)式各項(xiàng)的公因式。
(2)、議一議
下列多項(xiàng)式的各項(xiàng)是否有公因式如果有,試找出公因式。
①多項(xiàng)式a2b+ab2的公因式是ab,……公因式是字母;
②多項(xiàng)式3x2—3y的公因式是3,……公因式是數(shù)字系數(shù);
③多項(xiàng)式3x2—6x3的公因式是3x2,……公因式是數(shù)學(xué)系數(shù)與字母的乘積。
分析并猜想
確定一個(gè)多項(xiàng)式的公因式時(shí),要從和兩方面,分別進(jìn)行思考。
①如何確定公因式的數(shù)字系數(shù)
②如何確定公因式的字母字母的指數(shù)怎樣定
練一練:寫出下列多項(xiàng)式各項(xiàng)的公因式
(1)8x—16(2)2a2b—ab2
(3)4x2—2x(4)6m2n—4m3n3—2mn
【評(píng)析】:(1)、教師不要直接給出找多項(xiàng)式公因式的方法和因式分解教學(xué)設(shè)計(jì)人教版全文共5頁,當(dāng)前為第5頁。解釋,而是鼓勵(lì)學(xué)生自主探索,根據(jù)自己的體驗(yàn)來積累找公因式的方法和經(jīng)驗(yàn),并能透過相互間的交流來糾正解題中的常見錯(cuò)誤。
(2)、對(duì)公因式的理解是因式分解的基礎(chǔ),所以在解決這個(gè)問題時(shí)要注意配以練習(xí),個(gè)性是多次方及系數(shù)的公因式,要讓學(xué)生注意。
(3)、找公因式的一般步驟可歸納為:一看系數(shù)二看字母三看指數(shù)。
2、認(rèn)識(shí)因式分解
【概念2】:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式的叫做把這個(gè)多項(xiàng)式因式分解。
(課本)P71練一練第1題
(1)、下列各式由左邊到右邊的變形,哪些是因式分解,哪些不是
①。ab+ac+d=a(b+c)+d
②。a2—1=(a+1)(a—1)
③。(a+1)(a—1)=a2—1
(2)、你認(rèn)為提公因式法分解因式和單項(xiàng)式乘多項(xiàng)式這兩種變形是怎樣的關(guān)系從中你得到什么啟發(fā)
【評(píng)析】:(1)、本題主要是為了加深學(xué)生對(duì)因式分解概念的理解,使學(xué)生清楚因式分解的結(jié)果應(yīng)是整式乘積的形式。
(2)、教師安排本題意圖就是引導(dǎo)學(xué)生進(jìn)行分析討論,鼓勵(lì)學(xué)生勤于思考,各抒己見,培養(yǎng)學(xué)生的邏輯思維潛力和表達(dá)、交流潛力。讓學(xué)生在主動(dòng)學(xué)習(xí)中掌握了因式分解是整式乘法的互逆的過程,以及因式分解教學(xué)設(shè)計(jì)人教版全文共6頁,當(dāng)前為第6頁。理解利用它們之間的關(guān)系進(jìn)行因式分解的這種思想,從而降低了本節(jié)課的難點(diǎn)。
(三)『例題研究』
例1:把下列各式分解因式
(1)6a3b—9a2b2c(2)—2m3+8m2—12m
解:(1)6a3b—9a2b2c
=3a2b·2a—3a2b·3bc(找公因式,把各項(xiàng)分成公因式與一個(gè)單項(xiàng)式的乘積的形式)
=3a2b(2a—3bc)(提取公因式)
(2)—2m3+8m2—12m
=—(2m·m2—2m·4m+2m·6)(首項(xiàng)符號(hào)為負(fù),先將多項(xiàng)式放在帶負(fù)號(hào)的括號(hào)內(nèi),注意放入括號(hào)中各項(xiàng)符號(hào)的變化。)
=—2m(m2—4m+6)(提取公因式)
【評(píng)析】:(1)、因式分解的概念和好處需要學(xué)生多層次的感受,教師不要期望一次透徹的講解和分析就能讓學(xué)生完全掌握。這時(shí)先讓學(xué)生進(jìn)行初步的感受,再透過不同形式的練習(xí)增強(qiáng)對(duì)概念的理解例。
(2)、教師在講解例題時(shí),應(yīng)鼓勵(lì)學(xué)生自己動(dòng)手找公因式,讓學(xué)生透過動(dòng)手動(dòng)腦、實(shí)際操作,教師可在下面收集錯(cuò)誤,再加以點(diǎn)評(píng),加深對(duì)因式分解方法的理解。
(3)、教學(xué)中教師不能簡(jiǎn)單地要求學(xué)生記憶運(yùn)算法則,更要重視學(xué)生對(duì)算理的理解,讓學(xué)生嘗試說出每一步運(yùn)算的道理,有意識(shí)地因式分解教學(xué)設(shè)計(jì)人教版全文共7頁,當(dāng)前為第7頁。培養(yǎng)學(xué)生有條理地思考和語言表達(dá)潛力。
本題的易錯(cuò)點(diǎn):
(1)、漏項(xiàng):提公因式后括號(hào)中的項(xiàng)數(shù)應(yīng)與原多項(xiàng)式的項(xiàng)數(shù)一樣,這樣可檢查是否漏項(xiàng)。
(2)、符號(hào):由于添括號(hào)法則在上學(xué)期沒有涉及,所以有必要在此處強(qiáng)調(diào),添括號(hào)法則:括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變號(hào);括號(hào)前面是“—”號(hào),括到括號(hào)里的各項(xiàng)都要變號(hào)。
(四)『鞏固練習(xí)』
練一練:辨別下列因式分解的正誤
(1)8a3b2—12ab4+4ab=4ab(2a2b—3b3)
(2)4x2—12x3=2x2(2—6x)
(3)a3—a2=a2(a—1)=a3—a2
解(1)錯(cuò)誤,分解因式后,括號(hào)內(nèi)的多項(xiàng)式的項(xiàng)數(shù)漏掉了一項(xiàng)。
(2)錯(cuò)誤,分解因式后,括號(hào)內(nèi)的多項(xiàng)式中仍有公因式。
(3)錯(cuò)誤,分解因式后,又回到到了整式的乘法。
【評(píng)析】:(1)、這些多是學(xué)生易錯(cuò)的,本題設(shè)置的目的是讓學(xué)生運(yùn)用例1的成果準(zhǔn)確辨別因式分解中的常見錯(cuò)誤,對(duì)因式分解的認(rèn)識(shí)更加清晰。本例仍采用小組討論、交流的方式,讓學(xué)生都參與到課堂活動(dòng)中。
(2)、當(dāng)多項(xiàng)式的某一項(xiàng)恰好是公因式時(shí),這一項(xiàng)應(yīng)看成它與1的乘積,提公因式后剩下的應(yīng)是1。1作為項(xiàng)的系數(shù)通??墒÷裕绻麊为?dú)成一項(xiàng)時(shí),它在因式分解時(shí)不能漏項(xiàng)。
因式分解教學(xué)設(shè)計(jì)人教版全文共8頁,當(dāng)前為第8頁。(3)、進(jìn)行多項(xiàng)式分解因式時(shí),務(wù)必把每一個(gè)因式都分解到不能分解為止。
(4)、教師安排這一過程,完全放手讓學(xué)生自主進(jìn)行,充分暴露學(xué)生的思維過程,展現(xiàn)學(xué)生生動(dòng)活潑、主動(dòng)求知和富有的個(gè)性,使學(xué)生真正成為學(xué)習(xí)的主體,使因式分解與整式的乘法的關(guān)系得到真正強(qiáng)化,也分散了本節(jié)課的難點(diǎn)。
(五)『想一想』:
如何把多項(xiàng)式3a(x+y)—2b(x+y)分解因式
解:3a(x+y)—2b(x+y)=(x+y)(3a—2b)
評(píng)析:公因式(x+y)是多項(xiàng)式,屬較高要求,當(dāng)多項(xiàng)式中有相同的整體(多項(xiàng)式)時(shí),不要把它拆開,提取公因式時(shí)把它整體提出來,有時(shí)還需要做適當(dāng)變形,如:(2—a)=—(a—2),教學(xué)時(shí)可初步滲透換元思想,將換元思想引入因式分解,可使問題化繁為簡(jiǎn)。
【概念3】把多項(xiàng)式化成公因式與另一個(gè)多項(xiàng)式的積的形式,這種分解因式的方法叫做提公因式法。
初中因式分解教學(xué)反思
1、本節(jié)課根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),采用的教學(xué)流程是:提出問題—實(shí)際操作—?dú)w納方法—課堂練習(xí)—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識(shí)發(fā)生、構(gòu)成和發(fā)展的過程,讓學(xué)生進(jìn)一步發(fā)展觀察、歸納、類比、概括、逆向思考等潛力,發(fā)展有條理思考及語言表達(dá)潛力;
2、分解因式是一種變形,變形的結(jié)果應(yīng)是整式的積的形式,分因式分解教學(xué)設(shè)計(jì)人教版全文共9頁,當(dāng)前為第9頁。解因式與整式的乘法是互逆關(guān)系,即把分解因式看作是一個(gè)變形的過程,那么整式乘法又是分解因式的逆過程,這種互逆關(guān)系一方面體現(xiàn)二者之間的密切聯(lián)系,另一方面又說明了二者之間的根本區(qū)別。探索因式分解的方法,事實(shí)上是對(duì)整式乘法的再認(rèn)識(shí),因此,在教學(xué)過程中,教師要借助學(xué)生已有的整式乘法運(yùn)算的基礎(chǔ),給學(xué)生帶給豐富搞笑的問題情境,并給他們留下充分探索與交流的時(shí)間和空間,讓他們經(jīng)歷從整式乘法到因式分解的這種互逆變形的過程;
3、在提公因式方面,學(xué)生對(duì)公因式的認(rèn)識(shí)不足,對(duì)提公因式的要求不清楚,造成了學(xué)生在做分解因式時(shí)出現(xiàn)了以下錯(cuò)誤:
(1)公因式找錯(cuò);
(2)公因式找不完整(如:漏掉公因式的系數(shù)(或系數(shù)不是取各項(xiàng)系數(shù)的最大公約數(shù))、公因式中內(nèi)含多項(xiàng)式時(shí),漏掉系數(shù)或字母因數(shù)),導(dǎo)致因式分解不徹底;
4、由于在七年級(jí)上冊(cè)教材中沒有涉及添括號(hào)法則,所以學(xué)生在分解第一項(xiàng)系數(shù)是負(fù)數(shù)的多項(xiàng)式時(shí),出現(xiàn)了很多符號(hào)錯(cuò)誤;
因式分解是一個(gè)重點(diǎn),也是一個(gè)難點(diǎn),以上存在問題在以后的教學(xué)中有待進(jìn)一步加強(qiáng)。
因式分解教學(xué)設(shè)計(jì)人教版第3篇
教學(xué)目標(biāo)
教學(xué)知識(shí)點(diǎn)
使學(xué)生了解因式分解的好處,明白它與整式乘法在整式變形過程中的相反關(guān)系。
因式分解教學(xué)設(shè)計(jì)人教版全文共10頁,當(dāng)前為第10頁。潛力訓(xùn)練要求。
透過觀察,發(fā)現(xiàn)分解因式與整式乘法的關(guān)系,培養(yǎng)學(xué)生觀察潛力和語言概括潛力。
情感與價(jià)值觀要求。
透過觀察,推導(dǎo)分解因式與整式乘法的關(guān)系,讓學(xué)生了解事物間的因果聯(lián)系。
教學(xué)重點(diǎn)
1、理解因式分解的好處。
2、識(shí)別分解因式與整式乘法的關(guān)系。
教學(xué)難點(diǎn)透過觀察,歸納分解因式與整式乘法的關(guān)系。
教學(xué)方法觀察討論法
教學(xué)過程
Ⅰ、創(chuàng)設(shè)問題情境,引入新課
導(dǎo)入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)
Ⅱ、講授新課
1、討論993-99能被100整除嗎?你是怎樣想的?與同伴交流。
993-99=99X98X100
2、議一議
你能嘗試把a(bǔ)3-a化成n個(gè)整式的乘積的形式嗎?與同伴交流。
3、做一做
(1)計(jì)算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;
因式分解教學(xué)設(shè)計(jì)人教版全文共11頁,當(dāng)前為第11頁。③3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________
(2)根據(jù)上面的算式填空:
①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();
④y2-6y+9=()2。⑤a3-a=()()。
定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式分解因式。
4。想一想
由a(a+1)(a-1)得到a3-a的變形是什么運(yùn)算?由a3-a得到a(a+1)(a-1)的變形與這種運(yùn)算有什么不同?你還能舉一些類似的例子加以說明嗎?
下面我們一齊來總結(jié)一下。
如:m(a+b+c)=ma+mb+mc(1)
ma+mb+mc=m(a+b+c)(2)
5、整式乘法與分解因式的聯(lián)系和區(qū)別
ma+mb+mcm(a+b+c)。因式分解與整式乘法是相反方向的變形。
6。例題下列各式從左到右的變形,哪些是因式分解?
(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);
(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。
Ⅲ、課堂練習(xí)
P40隨堂練習(xí)
Ⅳ、課時(shí)小結(jié)
因式分解教學(xué)設(shè)計(jì)人教版全文共12頁,當(dāng)前為第12頁。本節(jié)課學(xué)習(xí)了因式分解的好處,即把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式;還學(xué)習(xí)了整式乘法與分解因式的關(guān)系是相反方向的變形。
因式分解教學(xué)設(shè)計(jì)人教版第4篇
教材分析
因式分解是進(jìn)行代數(shù)式恒等變形的重要手段之一,因式分解是在學(xué)習(xí)整式四則運(yùn)算的基礎(chǔ)上進(jìn)行的,它不僅僅在多項(xiàng)式的除法、簡(jiǎn)便運(yùn)算中等有直接的應(yīng)用,也為以后學(xué)習(xí)分式的約分與通分、解方程(組)及三解函數(shù)式的恒等變形帶給了必要的基礎(chǔ),因此學(xué)好因式分解對(duì)于代數(shù)知識(shí)的后續(xù)學(xué)習(xí),具有相當(dāng)重要的好處。由于本節(jié)課后學(xué)習(xí)提取公因式法,運(yùn)用公式法,分組分解法來進(jìn)行因式分解,務(wù)必以理解因式分解的概念為前提,所以本節(jié)資料的重點(diǎn)是因式分解的概念。由整式乘法尋求因式分解的方法是一種逆向思維過程,而逆向思維對(duì)初一學(xué)生還比較生疏,理解起來有必須難度,再者本節(jié)還沒涉及因式分解的具體方法,所以理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法是教學(xué)中的難點(diǎn)。
教學(xué)目標(biāo)
認(rèn)知目標(biāo):(1)理解因式分解的概念和好處
(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。
潛力目標(biāo):由學(xué)生自行探求解題途徑,培養(yǎng)學(xué)生觀察、分析、決定潛力和創(chuàng)新潛力,發(fā)展學(xué)生智能,深化學(xué)生逆向思維潛力和綜合運(yùn)用潛力。
因式分解教學(xué)設(shè)計(jì)人教版全文共13頁,當(dāng)前為第13頁。情感目標(biāo):培養(yǎng)學(xué)生理解矛盾的對(duì)立統(tǒng)一觀點(diǎn),獨(dú)立思考,勇于探索的精神和實(shí)事求是的科學(xué)態(tài)度。
目標(biāo)制定的思想
1.目標(biāo)具體化、明確化,從學(xué)生實(shí)際出發(fā),具有針對(duì)性和可行性,同時(shí)便于上課操作,便于檢測(cè)和及時(shí)反饋。
2.課堂教學(xué)體現(xiàn)潛力立意。
3.寓德育教育于教學(xué)之中。
教學(xué)方法
1.采用以設(shè)疑探究的引課方式,激發(fā)學(xué)生的求知欲望,提高學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)用心性。
2.把因式分解概念及其與整式乘法的關(guān)系作為主線,訓(xùn)練學(xué)生思維,以設(shè)疑——感知——概括——運(yùn)用為教學(xué)程序,充分遵循學(xué)生的認(rèn)知規(guī)律,使學(xué)生能順利地掌握重點(diǎn),突破難點(diǎn),提高潛力。
3.在課堂教學(xué)中,引導(dǎo)學(xué)生體會(huì)知識(shí)的發(fā)生發(fā)展過程,堅(jiān)持啟發(fā)式,鼓勵(lì)學(xué)生充分地動(dòng)腦、動(dòng)口、動(dòng)手,用心參與到教學(xué)中來,充分體現(xiàn)了學(xué)生的主動(dòng)性原則。
4.在充分尊重教材的前提下,融教材練習(xí)、想一想于教學(xué)過程中,增設(shè)了由淺入深、各不相同卻又緊密相關(guān)的訓(xùn)練題目,為學(xué)生順利掌握因式分解概念及其與整式乘法關(guān)系創(chuàng)造了有利條件。
5.改變傳統(tǒng)言傳身教的方式,利用計(jì)算機(jī)輔助教學(xué)手段進(jìn)行教學(xué),增大教學(xué)的容量和直觀性,提高教學(xué)效率和教學(xué)質(zhì)量。
教學(xué)過程安排
因式分解教學(xué)設(shè)計(jì)人教版全文共14頁,當(dāng)前為第14頁。一、提出問題,創(chuàng)設(shè)情境
問題:看誰算得快?(計(jì)算機(jī)出示問題)
(1)若a=101,b=99,則a2—b2=(a+b)(a—b)=(101+99)(101—99)=400
(2)若a=99,b=—1,則a2—2ab+b2=(a—b)2=(99+1)2=10000
(3)若x=—3,則20x2+60x=20x(x+3)=20x(—3)(—3+3)=0
二、觀察分析,探究新知
(1)請(qǐng)每題想得最快的同學(xué)談思路,得出最佳解題方法(同時(shí)計(jì)算機(jī)出示答案)
(2)觀察:a2—b2=(a+b)(a—b)①的左邊是一個(gè)什么式子?右邊又是什么形式?
a2—2ab+b2=(a—b)2②
20x2+60x=20x(x+3)③
(3)類比小學(xué)學(xué)過的因數(shù)分解概念,(例42=2X3X7④)得出因式分解概念。
板書課題:§7。1因式分解
1.因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。
三、獨(dú)立練習(xí),鞏固新知
練習(xí)
1.下列由左邊到右邊的變形,哪些是因式分解?哪些不是?為因式分解教學(xué)設(shè)計(jì)人教版全文共15頁,當(dāng)前為第15頁。什么?(計(jì)算機(jī)演示)
①(x+2)(x—2)=x2—4
②x2—4=(x+2)(x—2)
③a2—2ab+b2=(a—b)2
④3a(a+2)=3a2+6a
⑤3a2+6a=3a(a+2)
⑥x2—4+3x=(x—2)(x+2)+3x
⑦k2++2=(k+)2
⑧x—2—1=(x—1+1)(x—1—1)
⑨18a3bc=3a2b·6ac
2.因式分解與整式乘法的關(guān)系:
因式分解
結(jié)合:a2—b2=========(a+b)(a—b)
整式乘法
說明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的'形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。
結(jié)論:因式分解與整式乘法正好相反。
問題:你能利用因式分解與整式乘法正好相反這一關(guān)系,舉出幾個(gè)因式分解的例子嗎?
(如:由(x+1)(x—1)=x2—1得x2—1=(x+1)(x—1)
由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)
因式分解教學(xué)設(shè)計(jì)人教版全文共16頁,當(dāng)前為第16頁。四、例題教學(xué),運(yùn)用新知:
例:把下列各式分解因式:(計(jì)算機(jī)演示)
(1)am+bm(2)a2—9(3)a2+2ab+b2
(4)2ab—a2—b2(5)8a3+b6
練習(xí)2:填空:(計(jì)算機(jī)演示)
(1)∵2xy=2x2y—6xy2
∴2x2y—6xy2=2xy
(2)∵xy=2x2y—6xy2
∴2x2y—6xy2=xy
(3)∵2x=2x2y—6xy2
∴2x2y—6xy2=2x
五、強(qiáng)化訓(xùn)練,掌握新知:
練習(xí)3:把下列各式分解因式:(計(jì)算機(jī)演示)
(1)2ax+2ay(2)3mx—6nx(3)x2y+xy2
(4)x2+—x(5)x2—0。01(6)a3—1
(讓學(xué)生上來板演)
六、變式訓(xùn)練,擴(kuò)展新知(計(jì)算機(jī)演示)
1。若x2+mx—n能分解成(x—2)(x—5),則m=,n=
2.機(jī)動(dòng)題:(填空)x2—8x+m=(x—4),且m=
七、整理知識(shí),構(gòu)成結(jié)構(gòu)(即課堂小結(jié))
1.因式分解的概念因式分解是整式中的一種恒等變形
2.因式分解與整式乘法是兩種相反的恒等變形,也是思維方向因式分解教學(xué)設(shè)計(jì)人教版全文共17頁,當(dāng)前為第17頁。相反的兩種思維方式,因此,因式分解的思維過程實(shí)際也是整式乘法的逆向思維的過程。
3.利用2中關(guān)系,能夠從整式乘法探求因式分解的結(jié)果。
4.教學(xué)中滲透對(duì)立統(tǒng)一,以不變應(yīng)萬變的辯證唯物主義的思想方法。
八、布置作業(yè)
1.作業(yè)本(一)中§7。1節(jié)
2.選做題:①
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年上半年黑龍江工程學(xué)院事業(yè)單位公開招聘工作人員14人備考題庫及答案詳解1套
- 廠務(wù)電力安全培訓(xùn)課件
- 咖啡吧運(yùn)營(yíng)方案
- 快遞人才培養(yǎng)方案
- 未來五年不銹鋼企業(yè)縣域市場(chǎng)拓展與下沉戰(zhàn)略分析研究報(bào)告
- 未來五年鮭魚(海水)企業(yè)ESG實(shí)踐與創(chuàng)新戰(zhàn)略分析研究報(bào)告
- 未來五年利咽糖漿市場(chǎng)需求變化趨勢(shì)與商業(yè)創(chuàng)新機(jī)遇分析研究報(bào)告
- 未來五年油運(yùn)企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級(jí)戰(zhàn)略分析研究報(bào)告
- 未來五年投資企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級(jí)戰(zhàn)略分析研究報(bào)告
- 未來五年便利店食品企業(yè)縣域市場(chǎng)拓展與下沉戰(zhàn)略分析研究報(bào)告
- 2026年哈爾濱通河縣第一批公益性崗位招聘62人考試參考試題及答案解析
- 六年級(jí)寒假家長(zhǎng)會(huì)課件
- 物流鐵路專用線工程節(jié)能評(píng)估報(bào)告
- 2026天津市南開區(qū)衛(wèi)生健康系統(tǒng)招聘事業(yè)單位60人(含高層次人才)備考核心試題附答案解析
- 重瞼手術(shù)知情同意書
- 研發(fā)部門員工加班管理細(xì)則
- 46566-2025溫室氣體管理體系管理手冊(cè)及全套程序文件
- 九師聯(lián)盟2026屆高三上學(xué)期12月聯(lián)考英語(第4次質(zhì)量檢測(cè))(含答案)
- 第21章 反比例函數(shù)(單元測(cè)試·綜合卷)(含答案)-滬科版(2024)九上
- 鋼結(jié)構(gòu)橋梁施工監(jiān)測(cè)方案
- 2025年秋青島版(五四學(xué)制)小學(xué)數(shù)學(xué)五年級(jí)上冊(cè)(全冊(cè))知識(shí)點(diǎn)梳理歸納
評(píng)論
0/150
提交評(píng)論