河北獅州市2024年高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁(yè)
河北獅州市2024年高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁(yè)
河北獅州市2024年高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁(yè)
河北獅州市2024年高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁(yè)
河北獅州市2024年高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河北獅州市2024年高三六校第一次聯(lián)考數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.費(fèi)馬素?cái)?shù)是法國(guó)大數(shù)學(xué)家費(fèi)馬命名的,形如的素?cái)?shù)(如:)為費(fèi)馬索數(shù),在不超過(guò)30的正偶數(shù)中隨機(jī)選取一數(shù),則它能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和的概率是()A. B. C. D.2.某學(xué)校組織學(xué)生參加英語(yǔ)測(cè)試,成績(jī)的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為,若低于60分的人數(shù)是18人,則該班的學(xué)生人數(shù)是()A.45 B.50 C.55 D.603.若,則()A. B. C. D.4.著名的斐波那契數(shù)列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.40405.已知正方體的體積為,點(diǎn),分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.6.設(shè)雙曲線的左右焦點(diǎn)分別為,點(diǎn).已知?jiǎng)狱c(diǎn)在雙曲線的右支上,且點(diǎn)不共線.若的周長(zhǎng)的最小值為,則雙曲線的離心率的取值范圍是()A. B. C. D.7.在中,角,,的對(duì)邊分別為,,,若,,,則()A. B.3 C. D.48.設(shè)點(diǎn),P為曲線上動(dòng)點(diǎn),若點(diǎn)A,P間距離的最小值為,則實(shí)數(shù)t的值為()A. B. C. D.9.已知中,,則()A.1 B. C. D.10.如圖是一個(gè)算法流程圖,則輸出的結(jié)果是()A. B. C. D.11.已知函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.12.已知向量,則向量在向量方向上的投影為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知各項(xiàng)均為正數(shù)的等比數(shù)列的前項(xiàng)積為,,(且),則__________.14.已知實(shí)數(shù),對(duì)任意,有,且,則______.15.已知集合,,則________.16.在回歸分析的問(wèn)題中,我們可以通過(guò)對(duì)數(shù)變換把非線性回歸方程,()轉(zhuǎn)化為線性回歸方程,即兩邊取對(duì)數(shù),令,得到.受其啟發(fā),可求得函數(shù)()的值域是_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,是邊長(zhǎng)為的正方形的中心,平面,為的中點(diǎn).(Ⅰ)求證:平面平面;(Ⅱ)若,求二面角的余弦值.18.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線與曲線交于兩點(diǎn).(1)求的長(zhǎng);(2)在以為極點(diǎn),軸的正半軸為極軸建立的極坐標(biāo)系中,設(shè)點(diǎn)的極坐標(biāo)為,求點(diǎn)到線段中點(diǎn)的距離.19.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交于、兩點(diǎn),求的面積.20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),為上的動(dòng)點(diǎn),點(diǎn)滿足,點(diǎn)的軌跡為曲線.(Ⅰ)求的方程;(Ⅱ)在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線與的異于極點(diǎn)的交點(diǎn)為,與的異于極點(diǎn)的交點(diǎn)為,求.21.(12分)已知,,且.(1)求的最小值;(2)證明:.22.(10分)如圖,在四棱錐中,底面是邊長(zhǎng)為2的菱形,,.(1)證明:平面平面ABCD;(2)設(shè)H在AC上,,若,求PH與平面PBC所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

基本事件總數(shù),能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和只有,,,共有個(gè),根據(jù)古典概型求出概率.【詳解】在不超過(guò)的正偶數(shù)中隨機(jī)選取一數(shù),基本事件總數(shù)能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和的只有,,,共有個(gè)則它能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和的概率是本題正確選項(xiàng):【點(diǎn)睛】本題考查概率的求法,考查列舉法解決古典概型問(wèn)題,是基礎(chǔ)題.2、D【解析】

根據(jù)頻率分布直方圖中頻率=小矩形的高×組距計(jì)算成績(jī)低于60分的頻率,再根據(jù)樣本容量求出班級(jí)人數(shù).【詳解】根據(jù)頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學(xué)生人數(shù))是60(人).故選:D.【點(diǎn)睛】本題考查了頻率分布直方圖的應(yīng)用問(wèn)題,也考查了頻率的應(yīng)用問(wèn)題,屬于基礎(chǔ)題3、D【解析】

直接利用二倍角余弦公式與弦化切即可得到結(jié)果.【詳解】∵,∴,故選D【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變變換,同角三角函數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.4、D【解析】

計(jì)算,代入等式,根據(jù)化簡(jiǎn)得到答案.【詳解】,,,故,,故.故選:.【點(diǎn)睛】本題考查了斐波那契數(shù)列,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.5、D【解析】

由題意畫出圖形,將所在的面延它們的交線展開(kāi)到與所在的面共面,可得當(dāng)時(shí)最小,設(shè)正方體的棱長(zhǎng)為,得,進(jìn)一步求出四面體的體積即可.【詳解】解:如圖,

∵點(diǎn)M,N分別在棱上,要最小,將所在的面延它們的交線展開(kāi)到與所在的面共面,三線共線時(shí),最小,

設(shè)正方體的棱長(zhǎng)為,則,∴.

取,連接,則共面,在中,設(shè)到的距離為,

設(shè)到平面的距離為,

.

故選D.【點(diǎn)睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問(wèn)題,考查計(jì)算能力,是中檔題.6、A【解析】

依題意可得即可得到,從而求出雙曲線的離心率的取值范圍;【詳解】解:依題意可得如下圖象,所以則所以所以所以,即故選:A【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),屬于中檔題.7、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。8、C【解析】

設(shè),求,作為的函數(shù),其最小值是6,利用導(dǎo)數(shù)知識(shí)求的最小值.【詳解】設(shè),則,記,,易知是增函數(shù),且的值域是,∴的唯一解,且時(shí),,時(shí),,即,由題意,而,,∴,解得,.∴.故選:C.【點(diǎn)睛】本題考查導(dǎo)數(shù)的應(yīng)用,考查用導(dǎo)數(shù)求最值.解題時(shí)對(duì)和的關(guān)系的處理是解題關(guān)鍵.9、C【解析】

以為基底,將用基底表示,根據(jù)向量數(shù)量積的運(yùn)算律,即可求解.【詳解】,,.故選:C.【點(diǎn)睛】本題考查向量的線性運(yùn)算以及向量的基本定理,考查向量數(shù)量積運(yùn)算,屬于中檔題.10、A【解析】

執(zhí)行程序框圖,逐次計(jì)算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案.【詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計(jì)算結(jié)果,故選A.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的結(jié)果的計(jì)算與輸出,其中解答中執(zhí)行程序框圖,逐次計(jì)算,根據(jù)判斷條件終止循環(huán)是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.11、B【解析】

可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B【點(diǎn)睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識(shí),考查了學(xué)生的運(yùn)算求解能力.12、A【解析】

投影即為,利用數(shù)量積運(yùn)算即可得到結(jié)論.【詳解】設(shè)向量與向量的夾角為,由題意,得,,所以,向量在向量方向上的投影為.故選:A.【點(diǎn)睛】本題主要考察了向量的數(shù)量積運(yùn)算,難度不大,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用等比數(shù)列的性質(zhì)求得,進(jìn)而求得,再利用對(duì)數(shù)運(yùn)算求得的值.【詳解】由于,,所以,則,∴,,.故答案為:【點(diǎn)睛】本小題主要考查等比數(shù)列的性質(zhì),考查對(duì)數(shù)運(yùn)算,屬于基礎(chǔ)題.14、-1【解析】

由二項(xiàng)式定理及展開(kāi)式系數(shù)的求法得,又,所以,令得:,所以,得解.【詳解】由,且,則,又,所以,令得:,所以,故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理及展開(kāi)式系數(shù)的求法,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.15、【解析】

利用交集定義直接求解.【詳解】解:集合奇數(shù),偶數(shù),.故答案為:.【點(diǎn)睛】本題考查交集的求法,考查交集定義等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.16、【解析】

轉(zhuǎn)化()為,即得解.【詳解】由題意:().故答案為:【點(diǎn)睛】本題考查類比法求函數(shù)的值域,考查了學(xué)生邏輯推理,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)詳見(jiàn)解析;(Ⅱ).【解析】

(Ⅰ)由正方形的性質(zhì)得出,由平面得出,進(jìn)而可推導(dǎo)出平面,再利用面面垂直的判定定理可證得結(jié)論;(Ⅱ)取的中點(diǎn),連接、,以、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法能求出二面角的余弦值.【詳解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面,又平面,平面平面;(Ⅱ)取的中點(diǎn),連接、,是正方形,易知、、兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),以、、所在直線分別為、、軸建立如圖所示的空間直角坐標(biāo)系,在中,,,,、、、,設(shè)平面的一個(gè)法向量,,,由,得,令,則,,.設(shè)平面的一個(gè)法向量,,,由,得,取,得,,得.,二面角為鈍二面角,二面角的余弦值為.【點(diǎn)睛】本題考查面面垂直的證明,同時(shí)也考查了利用空間向量法求解二面角,考查推理能力與計(jì)算能力,屬于中等題.18、(1);(2).【解析】

(1)將直線的參數(shù)方程化為直角坐標(biāo)方程,由點(diǎn)到直線距離公式可求得圓心到直線距離,結(jié)合垂徑定理即可求得的長(zhǎng);(2)將的極坐標(biāo)化為直角坐標(biāo),將直線方程與圓的方程聯(lián)立,求得直線與圓的兩個(gè)交點(diǎn)坐標(biāo),由中點(diǎn)坐標(biāo)公式求得的坐標(biāo),再根據(jù)兩點(diǎn)間距離公式即可求得.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),化為直角坐標(biāo)方程為,即直線與曲線交于兩點(diǎn).則圓心坐標(biāo)為,半徑為1,則由點(diǎn)到直線距離公式可知,所以.(2)點(diǎn)的極坐標(biāo)為,化為直角坐標(biāo)可得,直線的方程與曲線的方程聯(lián)立,化簡(jiǎn)可得,解得,所以兩點(diǎn)坐標(biāo)為,所以,由兩點(diǎn)間距離公式可得.【點(diǎn)睛】本題考查了參數(shù)方程與普通方程轉(zhuǎn)化,極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化,點(diǎn)到直線距離公式應(yīng)用,兩點(diǎn)間距離公式的應(yīng)用,直線與圓交點(diǎn)坐標(biāo)求法,屬于基礎(chǔ)題.19、(1),;(2).【解析】

(1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標(biāo)方程兩邊同時(shí)乘以,結(jié)合可將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)計(jì)算出直線截圓所得弦長(zhǎng),并計(jì)算出原點(diǎn)到直線的距離,利用三角形的面積公式可求得的面積.【詳解】(1)由得,故直線的普通方程是.由,得,代入公式得,得,故曲線的直角坐標(biāo)方程是;(2)因?yàn)榍€的圓心為,半徑為,圓心到直線的距離為,則弦長(zhǎng).又到直線的距離為,所以.【點(diǎn)睛】本題考查參數(shù)方程、極坐標(biāo)方程與普通方程之間的轉(zhuǎn)化,同時(shí)也考查了直線與圓中三角形面積的計(jì)算,考查計(jì)算能力,屬于中等題.20、(Ⅰ)(為參數(shù));(Ⅱ)【解析】

(Ⅰ)設(shè)點(diǎn),,則,代入化簡(jiǎn)得到答案.(Ⅱ)分別計(jì)算,的極坐標(biāo)方程為,,取代入計(jì)算得到答案.【詳解】(Ⅰ)設(shè)點(diǎn),,,故,故的參數(shù)方程為:(為參數(shù)).(Ⅱ),故,極坐標(biāo)方程為:;,故,極坐標(biāo)方程為:.,故,,故.【點(diǎn)睛】本題考查了參數(shù)方程,極坐標(biāo)方程,弦長(zhǎng),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.21、(1)(2)證明見(jiàn)解析【解析】

(1)利用基本不等式即可求得最小值;(2)關(guān)鍵是配湊系數(shù),進(jìn)而利用基本不等式得證.【詳解】(1),當(dāng)且僅當(dāng)“”時(shí)取等號(hào),故的最小值為;(2),當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí).故.【點(diǎn)睛】本題主要考查基本不等式的運(yùn)用,屬于基礎(chǔ)題.22、(1)見(jiàn)解析;(2)【解析】

(1)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論