版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆甘肅省定西市重點(diǎn)中學(xué)高考數(shù)學(xué)必刷試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.2.給出以下四個(gè)命題:①依次首尾相接的四條線段必共面;②過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面;③空間中如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角必相等;④垂直于同一直線的兩條直線必平行.其中正確命題的個(gè)數(shù)是()A.0 B.1 C.2 D.33.在邊長(zhǎng)為2的菱形中,,將菱形沿對(duì)角線對(duì)折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.4.函數(shù)的部分圖像大致為()A. B.C. D.5.的內(nèi)角的對(duì)邊分別為,若,則內(nèi)角()A. B. C. D.6.已知橢圓,直線與直線相交于點(diǎn),且點(diǎn)在橢圓內(nèi)恒成立,則橢圓的離心率取值范圍為()A. B. C. D.7.已知角的終邊與單位圓交于點(diǎn),則等于()A. B. C. D.8.某幾何體的三視圖如圖所示,其俯視圖是由一個(gè)半圓與其直徑組成的圖形,則此幾何體的體積是()A. B. C. D.9.已知拋物線和點(diǎn),直線與拋物線交于不同兩點(diǎn),,直線與拋物線交于另一點(diǎn).給出以下判斷:①以為直徑的圓與拋物線準(zhǔn)線相離;②直線與直線的斜率乘積為;③設(shè)過(guò)點(diǎn),,的圓的圓心坐標(biāo)為,半徑為,則.其中,所有正確判斷的序號(hào)是()A.①② B.①③ C.②③ D.①②③10.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.11.如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線與平面所成角為,直線與平面所成角為,則()A. B. C. D.12.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,D是AB的中點(diǎn),若,且,則面積的最大值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知關(guān)于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集為A,且A中共含有n個(gè)整數(shù),則當(dāng)n最小時(shí)實(shí)數(shù)a的值為_(kāi)____.14.在直三棱柱內(nèi)有一個(gè)與其各面都相切的球O1,同時(shí)在三棱柱外有一個(gè)外接球.若,,,則球的表面積為_(kāi)_____.15.如圖,在直四棱柱中,底面是平行四邊形,點(diǎn)是棱的中點(diǎn),點(diǎn)是棱靠近的三等分點(diǎn),且三棱錐的體積為2,則四棱柱的體積為_(kāi)_____.16.若函數(shù)滿足:①是偶函數(shù);②的圖象關(guān)于點(diǎn)對(duì)稱.則同時(shí)滿足①②的,的一組值可以分別是__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某大學(xué)生在開(kāi)學(xué)季準(zhǔn)備銷(xiāo)售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開(kāi)學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開(kāi)學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開(kāi)學(xué)季進(jìn)了160盒該產(chǎn)品,以(單位:盒,)表示這個(gè)開(kāi)學(xué)季內(nèi)的市場(chǎng)需求量,(單位:元)表示這個(gè)開(kāi)學(xué)季內(nèi)經(jīng)銷(xiāo)該產(chǎn)品的利潤(rùn).(1)根據(jù)直方圖估計(jì)這個(gè)開(kāi)學(xué)季內(nèi)市場(chǎng)需求量的平均數(shù)和眾數(shù);(2)將表示為的函數(shù);(3)以需求量的頻率作為各需求量的概率,求開(kāi)學(xué)季利潤(rùn)不少于4800元的概率.18.(12分)如圖,四棱錐中,底面是菱形,對(duì)角線交于點(diǎn)為棱的中點(diǎn),.求證:(1)平面;(2)平面平面.19.(12分)已知凸邊形的面積為1,邊長(zhǎng),,其內(nèi)部一點(diǎn)到邊的距離分別為.求證:.20.(12分)如圖,在直三棱柱中,分別是中點(diǎn),且,.求證:平面;求點(diǎn)到平面的距離.21.(12分)已知函數(shù)f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)當(dāng)x>0時(shí),若函數(shù)g(x)(a>0)的最小值恒大于f(x),求實(shí)數(shù)a的取值范圍.22.(10分)已知,,且.(1)求的最小值;(2)證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時(shí)雙曲線,則曲線的離心率為,故選C.【點(diǎn)睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程及其簡(jiǎn)單的幾何性質(zhì)的應(yīng)用,其中解答中熟記雙曲線的幾何性質(zhì),準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.2、B【解析】
用空間四邊形對(duì)①進(jìn)行判斷;根據(jù)公理2對(duì)②進(jìn)行判斷;根據(jù)空間角的定義對(duì)③進(jìn)行判斷;根據(jù)空間直線位置關(guān)系對(duì)④進(jìn)行判斷.【詳解】①中,空間四邊形的四條線段不共面,故①錯(cuò)誤.②中,由公理2知道,過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面,故②正確.③中,由空間角的定義知道,空間中如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角相等或互補(bǔ),故③錯(cuò)誤.④中,空間中,垂直于同一直線的兩條直線可相交,可平行,可異面,故④錯(cuò)誤.故選:B【點(diǎn)睛】本小題考查空間點(diǎn),線,面的位置關(guān)系及其相關(guān)公理,定理及其推論的理解和認(rèn)識(shí);考查空間想象能力,推理論證能力,考查數(shù)形結(jié)合思想,化歸與轉(zhuǎn)化思想.3、D【解析】
取AC中點(diǎn)N,由題意得即為二面角的平面角,過(guò)點(diǎn)B作于O,易得點(diǎn)O為的中心,則三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,列出方程即可得解.【詳解】如圖,由題意易知與均為正三角形,取AC中點(diǎn)N,連接BN,DN,則,,即為二面角的平面角,過(guò)點(diǎn)B作于O,則平面ACD,由,可得,,,即點(diǎn)O為的中心,三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.【點(diǎn)睛】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.4、A【解析】
根據(jù)函數(shù)解析式,可知的定義域?yàn)?,通過(guò)定義法判斷函數(shù)的奇偶性,得出,則為偶函數(shù),可排除選項(xiàng),觀察選項(xiàng)的圖象,可知代入,解得,排除選項(xiàng),即可得出答案.【詳解】解:因?yàn)?,所以的定義域?yàn)椋瑒t,∴為偶函數(shù),圖象關(guān)于軸對(duì)稱,排除選項(xiàng),且當(dāng)時(shí),,排除選項(xiàng),所以正確.故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式識(shí)別函數(shù)圖象,利用函數(shù)的奇偶性和特殊值法進(jìn)行排除.5、C【解析】
由正弦定理化邊為角,由三角函數(shù)恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【點(diǎn)睛】本題考查正弦定理,考查兩角和的正弦公式和誘導(dǎo)公式,掌握正弦定理的邊角互化是解題關(guān)鍵.6、A【解析】
先求得橢圓焦點(diǎn)坐標(biāo),判斷出直線過(guò)橢圓的焦點(diǎn).然后判斷出,判斷出點(diǎn)的軌跡方程,根據(jù)恒在橢圓內(nèi)列不等式,化簡(jiǎn)后求得離心率的取值范圍.【詳解】設(shè)是橢圓的焦點(diǎn),所以.直線過(guò)點(diǎn),直線過(guò)點(diǎn),由于,所以,所以點(diǎn)的軌跡是以為直徑的圓.由于點(diǎn)在橢圓內(nèi)恒成立,所以橢圓的短軸大于,即,所以,所以雙曲線的離心率,所以.故選:A【點(diǎn)睛】本小題主要考查直線與直線的位置關(guān)系,考查動(dòng)點(diǎn)軌跡的判斷,考查橢圓離心率的取值范圍的求法,屬于中檔題.7、B【解析】
先由三角函數(shù)的定義求出,再由二倍角公式可求.【詳解】解:角的終邊與單位圓交于點(diǎn),,故選:B【點(diǎn)睛】考查三角函數(shù)的定義和二倍角公式,是基礎(chǔ)題.8、C【解析】由三視圖可知,該幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高為2的圓錐的一半,所以,半圓柱的體積為,上部半圓錐的體積為,所以該幾何體的體積為,故應(yīng)選.9、D【解析】
對(duì)于①,利用拋物線的定義,利用可判斷;對(duì)于②,設(shè)直線的方程為,與拋物線聯(lián)立,用坐標(biāo)表示直線與直線的斜率乘積,即可判斷;對(duì)于③,將代入拋物線的方程可得,,從而,,利用韋達(dá)定理可得,再由,可用m表示,線段的中垂線與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,可得a,即可判斷.【詳解】如圖,設(shè)為拋物線的焦點(diǎn),以線段為直徑的圓為,則圓心為線段的中點(diǎn).設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線的距離為,顯然,,三點(diǎn)不共線,則.所以①正確.由題意可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點(diǎn),的坐標(biāo)分別為,,則,.所以.則直線與直線的斜率乘積為.所以②正確.將代入拋物線的方程可得,,從而,.根據(jù)拋物線的對(duì)稱性可知,,兩點(diǎn)關(guān)于軸對(duì)稱,所以過(guò)點(diǎn),,的圓的圓心在軸上.由上,有,,則.所以,線段的中垂線與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,所以.于是,,代入,,得,所以.所以③正確.故選:D【點(diǎn)睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于較難題.10、C【解析】
利用基本初等函數(shù)的單調(diào)性判斷各選項(xiàng)中函數(shù)在區(qū)間上的單調(diào)性,進(jìn)而可得出結(jié)果.【詳解】對(duì)于A選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對(duì)于B選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對(duì)于C選項(xiàng),函數(shù)在區(qū)間上為減函數(shù);對(duì)于D選項(xiàng),函數(shù)在區(qū)間上為增函數(shù).故選:C.【點(diǎn)睛】本題考查函數(shù)在區(qū)間上單調(diào)性的判斷,熟悉一些常見(jiàn)的基本初等函數(shù)的單調(diào)性是判斷的關(guān)鍵,屬于基礎(chǔ)題.11、A【解析】
作于,于,分析可得,,再根據(jù)正弦的大小關(guān)系判斷分析得,再根據(jù)線面角的最小性判定即可.【詳解】作于,于.因?yàn)槠矫嫫矫?平面.故,故平面.故二面角為.又直線與平面所成角為,因?yàn)?故.故,當(dāng)且僅當(dāng)重合時(shí)取等號(hào).又直線與平面所成角為,且為直線與平面內(nèi)的直線所成角,故,當(dāng)且僅當(dāng)平面時(shí)取等號(hào).故.故選:A【點(diǎn)睛】本題主要考查了線面角與線線角的大小判斷,需要根據(jù)題意確定角度的正弦的關(guān)系,同時(shí)運(yùn)用線面角的最小性進(jìn)行判定.屬于中檔題.12、A【解析】
根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點(diǎn),且,,即,即,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.的面積,所以面積的最大值為.故選:.【點(diǎn)睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運(yùn)算,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】
討論三種情況,a<0時(shí),根據(jù)均值不等式得到a(﹣a)≤﹣14,計(jì)算等號(hào)成立的條件得到答案.【詳解】已知關(guān)于x的不等式(ax﹣a1﹣4)(x﹣4)>0,①a<0時(shí),[x﹣(a)](x﹣4)<0,其中a0,故解集為(a,4),由于a(﹣a)≤﹣14,當(dāng)且僅當(dāng)﹣a,即a=﹣1時(shí)取等號(hào),∴a的最大值為﹣4,當(dāng)且僅當(dāng)a4時(shí),A中共含有最少個(gè)整數(shù),此時(shí)實(shí)數(shù)a的值為﹣1;②a=0時(shí),﹣4(x﹣4)>0,解集為(﹣∞,4),整數(shù)解有無(wú)窮多,故a=0不符合條件;③a>0時(shí),[x﹣(a)](x﹣4)>0,其中a4,∴故解集為(﹣∞,4)∪(a,+∞),整數(shù)解有無(wú)窮多,故a>0不符合條件;綜上所述,a=﹣1.故答案為:﹣1.【點(diǎn)睛】本題考查了解不等式,均值不等式,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.14、【解析】
先求出球O1的半徑,再求出球的半徑,即得球的表面積.【詳解】解:,,,,設(shè)球O1的半徑為,由題得,所以棱柱的側(cè)棱為.由題得棱柱外接球的直徑為,所以外接球的半徑為,所以球的表面積為.故答案為:【點(diǎn)睛】本題主要考查幾何體的內(nèi)切球和外接球問(wèn)題,考查球的表面積的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于中檔題.15、12【解析】
由題意,設(shè)底面平行四邊形的,且邊上的高為,直四棱柱的高為,分別表示出直四棱柱的體積和三棱錐的體積,即可求解。【詳解】由題意,設(shè)底面平行四邊形的,且邊上的高為,直四棱柱的高為,則直四棱柱的體積為,又由三棱錐的體積為,解得,即直四棱柱的體積為。【點(diǎn)睛】本題主要考查了棱柱與棱錐的體積的計(jì)算問(wèn)題,其中解答中正確認(rèn)識(shí)幾何體的結(jié)構(gòu)特征,合理、恰當(dāng)?shù)乇硎局彼睦庵忮F的體積是解答本題的關(guān)鍵,著重考查了推理與運(yùn)算能力,以及空間想象能力,屬于中檔試題。16、,【解析】
根據(jù)是偶函數(shù)和的圖象關(guān)于點(diǎn)對(duì)稱,即可求出滿足條件的和.【詳解】由是偶函數(shù)及,可取,則,由的圖象關(guān)于點(diǎn)對(duì)稱,得,,即,,可取.故,的一組值可以分別是,.故答案為:,.【點(diǎn)睛】本題主要考查了正弦型三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),眾數(shù)為150;(2);(3)【解析】
(1)由頻率直方圖分別求出各組距內(nèi)的頻率,由此能求出這個(gè)開(kāi)學(xué)季內(nèi)市場(chǎng)需求量的眾數(shù)和平均數(shù);(2)由已知條件推導(dǎo)出當(dāng)時(shí),,當(dāng)時(shí),,由此能將表示為的函數(shù);(3)利用頻率分布直方圖能求出利潤(rùn)不少于4800元的概率.【詳解】(1)由直方圖可估計(jì)需求量的眾數(shù)為150,由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:∴估計(jì)需求量的平均數(shù)為:(2)當(dāng)時(shí),當(dāng)時(shí),∴(3)由(2)知當(dāng)時(shí),當(dāng)時(shí),得∴開(kāi)學(xué)季利潤(rùn)不少于4800元的需求量為由頻率分布直方圖可所求概率【點(diǎn)睛】本題考查頻率分布直方圖的應(yīng)用,考查函數(shù)解析式的求法,考查概率的估計(jì),是中檔題,解題時(shí)要注意頻率分布直方圖的合理運(yùn)用.18、(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.【解析】
(1)連結(jié)根據(jù)中位線的性質(zhì)證明即可.(2)證明,再證明平面即可.【詳解】解:證明:連結(jié)是菱形對(duì)角線的交點(diǎn),為的中點(diǎn),是棱的中點(diǎn),平面平面平面解:在菱形中,且為的中點(diǎn),,,平面平面,平面平面.【點(diǎn)睛】本題主要考查了線面平行與垂直的判定,屬于基礎(chǔ)題.19、證明見(jiàn)解析【解析】
由已知,易得,所以利用柯西不等式和基本不等式即可證明.【詳解】因?yàn)橥惯呅蔚拿娣e為1,所以,所以(由柯西不等式得)(由均值不等式得)【點(diǎn)睛】本題考查利用柯西不等式、基本不等式證明不等式的問(wèn)題,考查學(xué)生對(duì)不等式靈活運(yùn)用的能力,是一道容易題.20、(1)詳見(jiàn)解析;(2).【解析】
(1)利用線面垂直的判定定理和性質(zhì)定理即可證明;(2)取中點(diǎn)為,則,證得平面,利用等體積
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年中醫(yī)藥學(xué)專(zhuān)家中藥藥理學(xué)研究新進(jìn)展考點(diǎn)題
- 上消化道腫瘤患者的護(hù)理
- 外陰損傷課件
- 2026年贛州職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)筆試模擬試題含詳細(xì)答案解析
- 2026年上海杉達(dá)學(xué)院?jiǎn)握芯C合素質(zhì)考試參考題庫(kù)含詳細(xì)答案解析
- 眼外傷的緊急處理
- 2026年牡丹江大學(xué)高職單招職業(yè)適應(yīng)性測(cè)試模擬試題及答案詳細(xì)解析
- 2026年濰坊工商職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試備考試題及答案詳細(xì)解析
- 2026年鄭州電力高等專(zhuān)科學(xué)校單招綜合素質(zhì)考試模擬試題含詳細(xì)答案解析
- 2026年山西體育職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)筆試備考題庫(kù)含詳細(xì)答案解析
- 工業(yè)機(jī)器人技術(shù)基礎(chǔ)電子教案
- 《胰高血糖素抵抗》課件
- 能源與動(dòng)力工程測(cè)試技術(shù) 課件 第十章 轉(zhuǎn)速、轉(zhuǎn)矩及功率測(cè)量
- 2025年安徽省中考模擬英語(yǔ)試題(原卷版+解析版)
- 2024-2025學(xué)年云南省昆明市盤(pán)龍區(qū)五年級(jí)(上)期末數(shù)學(xué)試卷(含答案)
- 論地理環(huán)境對(duì)潮汕飲食文化的影響
- 值班人員在崗情況檢查記錄表周一
- 西充縣山永家庭農(nóng)場(chǎng)生豬養(yǎng)殖項(xiàng)目(擴(kuò)建)環(huán)評(píng)報(bào)告
- 赤峰南臺(tái)子金礦有限公司金礦2022年度礦山地質(zhì)環(huán)境治理計(jì)劃書(shū)
- 徐州市銅山區(qū)法院系統(tǒng)書(shū)記員招聘考試真題
- 氣穴現(xiàn)象和液壓沖擊
評(píng)論
0/150
提交評(píng)論