版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年上海市上戲附中高三第六次模擬考試數(shù)學試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的大致圖象為()A. B.C. D.2.已知向量,,若,則()A. B. C.-8 D.83.以,為直徑的圓的方程是A. B.C. D.4.已知復(fù)數(shù)(為虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點的坐標是()A. B. C. D.5.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題6.已知不重合的平面和直線,則“”的充分不必要條件是()A.內(nèi)有無數(shù)條直線與平行 B.且C.且 D.內(nèi)的任何直線都與平行7.已知正三角形的邊長為2,為邊的中點,、分別為邊、上的動點,并滿足,則的取值范圍是()A. B. C. D.8.已知實數(shù)滿足約束條件,則的最小值是A. B. C.1 D.49.已知,則()A.5 B. C.13 D.10.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形11.已知復(fù)數(shù)是純虛數(shù),其中是實數(shù),則等于()A. B. C. D.12.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,滿足,其中,,則的值為_______________.14.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),則?_____,△ABC的面積為_____.15.設(shè)復(fù)數(shù)滿足,其中是虛數(shù)單位,若是的共軛復(fù)數(shù),則____________.16.在平面直角坐標系中,已知圓,圓.直線與圓相切,且與圓相交于,兩點,則弦的長為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐V﹣ABCD中,底面ABCD是菱形,對角線AC與BD交于點O,VO⊥平面ABCD,E是棱VC的中點.(1)求證:VA∥平面BDE;(2)求證:平面VAC⊥平面BDE.18.(12分)如圖1,四邊形為直角梯形,,,,,,為線段上一點,滿足,為的中點,現(xiàn)將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面;(2)能否在線段上找到一點(端點除外)使得直線與平面所成角的正弦值為?若存在,試確定點的位置;若不存在,請說明理由.19.(12分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點.(1)證明:平面;(2)求幾何體的體積.20.(12分)設(shè)函數(shù),().(1)若曲線在點處的切線方程為,求實數(shù)a、m的值;(2)若對任意恒成立,求實數(shù)a的取值范圍;(3)關(guān)于x的方程能否有三個不同的實根?證明你的結(jié)論.21.(12分)已知分別是橢圓的左焦點和右焦點,橢圓的離心率為是橢圓上兩點,點滿足.(1)求的方程;(2)若點在圓上,點為坐標原點,求的取值范圍.22.(10分)已知各項均不相等的等差數(shù)列的前項和為,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
利用特殊點的坐標代入,排除掉C,D;再由判斷A選項正確.【詳解】,排除掉C,D;,,,.故選:A.【點睛】本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問題,代入特殊點,采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.2、B【解析】
先求出向量,的坐標,然后由可求出參數(shù)的值.【詳解】由向量,,則,,又,則,解得.故選:B【點睛】本題考查向量的坐標運算和模長的運算,屬于基礎(chǔ)題.3、A【解析】
設(shè)圓的標準方程,利用待定系數(shù)法一一求出,從而求出圓的方程.【詳解】設(shè)圓的標準方程為,由題意得圓心為,的中點,根據(jù)中點坐標公式可得,,又,所以圓的標準方程為:,化簡整理得,所以本題答案為A.【點睛】本題考查待定系數(shù)法求圓的方程,解題的關(guān)鍵是假設(shè)圓的標準方程,建立方程組,屬于基礎(chǔ)題.4、A【解析】
直接利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,求得的坐標得出答案.【詳解】解:,在復(fù)平面內(nèi)對應(yīng)的點的坐標是.故選:A.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.5、D【解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.6、B【解析】
根據(jù)充分不必要條件和直線和平面,平面和平面的位置關(guān)系,依次判斷每個選項得到答案.【詳解】A.內(nèi)有無數(shù)條直線與平行,則相交或,排除;B.且,故,當,不能得到且,滿足;C.且,,則相交或,排除;D.內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關(guān)系,意在考查學生的綜合應(yīng)用能力.7、A【解析】
建立平面直角坐標系,求出直線,設(shè)出點,通過,找出與的關(guān)系.通過數(shù)量積的坐標表示,將表示成與的關(guān)系式,消元,轉(zhuǎn)化成或的二次函數(shù),利用二次函數(shù)的相關(guān)知識,求出其值域,即為的取值范圍.【詳解】以D為原點,BC所在直線為軸,AD所在直線為軸建系,設(shè),則直線,設(shè)點,所以由得,即,所以,由及,解得,由二次函數(shù)的圖像知,,所以的取值范圍是.故選A.【點睛】本題主要考查解析法在向量中的應(yīng)用,以及轉(zhuǎn)化與化歸思想的運用.8、B【解析】
作出該不等式組表示的平面區(qū)域,如下圖中陰影部分所示,設(shè),則,易知當直線經(jīng)過點時,z取得最小值,由,解得,所以,所以,故選B.9、C【解析】
先化簡復(fù)數(shù),再求,最后求即可.【詳解】解:,,故選:C【點睛】考查復(fù)數(shù)的運算,是基礎(chǔ)題.10、C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點:平面的基本性質(zhì)及推論.11、A【解析】
對復(fù)數(shù)進行化簡,由于為純虛數(shù),則化簡后的復(fù)數(shù)形式中,實部為0,得到的值,從而得到復(fù)數(shù).【詳解】因為為純虛數(shù),所以,得所以.故選A項【點睛】本題考查復(fù)數(shù)的四則運算,純虛數(shù)的概念,屬于簡單題.12、B【解析】
根據(jù)線面平行、線面垂直和空間角的知識,判斷A選項的正確性.由線面平行有關(guān)知識判斷B選項的正確性.根據(jù)面面垂直的判定定理,判斷C選項的正確性.根據(jù)面面平行的性質(zhì)判斷D選項的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點睛】本小題主要考查空間線線、線面和面面有關(guān)命題真假性的判斷,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意,判斷出,根據(jù)等比數(shù)列的性質(zhì)可得,再令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),列出等式,求出和的值即可.【詳解】解:由,其中,,可得,則,令,,可得.①又令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),可得,所以.②根據(jù)①②得出,.所以.故答案為.【點睛】本題主要考查等差數(shù)列、等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.14、【解析】
①根據(jù)向量數(shù)量積的坐標表示結(jié)合兩角差的正弦公式的逆用即可得解;②結(jié)合①求出,根據(jù)面積公式即可得解.【詳解】①2(sin32°?cos77°﹣cos32°?sin77°),②,,∴,∴.故答案為:.【點睛】此題考查平面向量與三角函數(shù)解三角形綜合應(yīng)用,涉及平面向量數(shù)量積的坐標表示,三角恒等變換,根據(jù)三角形面積公式求解三角形面積,綜合性強.15、【解析】
由于,則.16、【解析】
利用直線與圓相切求出斜率,得到直線的方程,幾何法求出【詳解】解:直線與圓相切,圓心為由,得或,當時,到直線的距離,不成立,當時,與圓相交于,兩點,到直線的距離,故答案為.【點睛】考查直線與圓的位置關(guān)系,相切和相交問題,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】
(1)連結(jié)OE,證明VA∥OE得到答案.(2)證明VO⊥BD,BD⊥AC,得到BD⊥平面VAC,得到證明.【詳解】(1)連結(jié)OE.因為底面ABCD是菱形,所以O(shè)為AC的中點,又因為E是棱VC的中點,所以VA∥OE,又因為OE?平面BDE,VA?平面BDE,所以VA∥平面BDE;(2)因為VO⊥平面ABCD,又BD?平面ABCD,所以VO⊥BD,因為底面ABCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC?平面VAC,所以BD⊥平面VAC.又因為BD?平面BDE,所以平面VAC⊥平面BDE.【點睛】本題考查了線面平行,面面垂直,意在考查學生的推斷能力和空間想象能力.18、(1)證明見解析;(2)存在點是線段的中點,使得直線與平面所成角的正弦值為.【解析】
(1)在直角梯形中,根據(jù),,得為等邊三角形,再由余弦定理求得,滿足,得到,再根據(jù)平面平面,利用面面垂直的性質(zhì)定理證明.(2)建立空間直角坐標系:假設(shè)在上存在一點使直線與平面所成角的正弦值為,且,,求得平面的一個法向量,再利用線面角公式求解.【詳解】(1)證明:在直角梯形中,,,因此為等邊三角形,從而,又,由余弦定理得:,∴,即,且折疊后與位置關(guān)系不變,又∵平面平面,且平面平面.∴平面,∵平面,∴平面平面.(2)∵為等邊三角形,為的中點,∴,又∵平面平面,且平面平面,∴平面,取的中點,連結(jié),則,從而,以為坐標原點建立如圖所示的空間直角坐標系:則,,則,假設(shè)在上存在一點使直線與平面所成角的正弦值為,且,,∵,∴,故,∴,又,該平面的法向量為,,令得,∴,解得或(舍),綜上可知,存在點是線段的中點,使得直線與平面所成角的正弦值為.【點睛】本題主要考查面面垂直的性質(zhì)定理和向量法研究線面角問題,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于中檔題.19、(1)見解析;(2)【解析】
(1)由題可知,根據(jù)三角形的中位線的性質(zhì),得出,根據(jù)矩形的性質(zhì)得出,所以,再利用線面平行的判定定理即可證出平面;(2)由于平面平面,根據(jù)面面垂直的性質(zhì),得出平面,從而得出到平面的距離為,結(jié)合棱錐的體積公式,即可求得結(jié)果.【詳解】解:(1)∵,分別為,的中點,∴,∵四邊形是矩形,∴,∴,∵平面,平面,∴平面.(2)取,的中點,,連接,,,,則,由于為三棱柱,為四棱錐,∵平面平面,∴平面,由已知可求得,∴到平面的距離為,因為四邊形是矩形,,,,設(shè)幾何體的體積為,則,∴,即:.【點睛】本題考查線面平行的判定、面面垂直的性質(zhì)和棱錐的體積公式,考查邏輯推理和計算能力.20、(1),;(2);(3)不能,證明見解析【解析】
(1)求出,結(jié)合導(dǎo)數(shù)的幾何意義即可求解;(2)構(gòu)造,則原題等價于對任意恒成立,即時,,利用導(dǎo)數(shù)求最值即可,值得注意的是,可以通過代特殊值,由求出的范圍,再研究該范圍下單調(diào)性;(3)構(gòu)造并進行求導(dǎo),研究單調(diào)性,結(jié)合函數(shù)零點存在性定理證明即可.【詳解】(1),,曲線在點處的切線方程為,,解得.(2)記,整理得,由題知,對任意恒成立,對任意恒成立,即時,,,解得,當時,對任意,,,,,即在單調(diào)遞增,此時,實數(shù)的取值范圍為.(3)關(guān)于的方程不可能有三個不同的實根,以下給出證明:記,,則關(guān)于的方程有三個不同的實根,等價于函數(shù)有三個零點,,當時,,記,則,在單調(diào)遞增,,即,,在單調(diào)遞增,至多有一個零點;當時,記,則,在單調(diào)遞增,即在單調(diào)遞增,至多有一個零點,則至多有兩個單調(diào)區(qū)間,至多有兩個零點.因此,不可能有三個零點.關(guān)于的方程不可能有三個不同的實根.【點睛】本題考查了導(dǎo)數(shù)幾何意義的應(yīng)用、利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)的零點存在性定理,考查了轉(zhuǎn)化與化歸的數(shù)學思想,屬于難題.21、(1);(2).【解析】
(1)根據(jù)焦點坐標和離心率,結(jié)合橢圓中的關(guān)系,即可求得的值,進而得橢圓的標準方程.(2)設(shè)出直線的方程為,由題意可知為中點.聯(lián)立直線與橢圓方程,由韋達定理表示出,由判別式可得;由平面向量的線性運算及數(shù)量積定義,化簡可得,代入弦長公式化簡;由中點坐標公式可得點的坐標,代入圓的方程,化簡可得,代入數(shù)量積公式并化簡,由換元法令,代入可得,再令及,結(jié)合函數(shù)單調(diào)性即可確定的取值范圍,即確定的取值范圍,因而可得的取值范圍.【詳解】(1)分別是橢圓的左焦點和右焦點,則,橢圓的離心率為則解得,所以,所以的方程為.(2)設(shè)直線的方程為,點滿足,則為中點,點在圓上,設(shè),聯(lián)立直線與橢圓方程,化簡可得,所以則,化簡可得,而由弦長
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 標準化理論培訓(xùn)課件
- 2026年智能掃描儀項目投資計劃書
- 醫(yī)學美容紋身技術(shù)培訓(xùn)
- 主任講解神經(jīng)外科微創(chuàng)手術(shù)
- 查房制度培訓(xùn)課件圖
- 柏林之夜介紹
- 廣東省汕頭市潮南區(qū)司馬浦公辦學校2025-2026學年八年級上學期12月月考物理試題(解析版)
- 核桃裝飾畫培訓(xùn)課件
- 核心技術(shù)培訓(xùn)課件教學
- 《DZT 0316-2018砂石行業(yè)綠色礦山建設(shè)規(guī)范》專題研究報告
- 10.2 常見的酸和堿(課件)-2024-2025學年九年級化學人教版下冊
- 2024電力智能錄波器技術(shù)規(guī)范
- 《中國慢性阻塞性肺疾病基層診療與管理指南(2024年)》解讀課件
- JJF1033-2023計量標準考核規(guī)范
- 暨南大學《法理學》2023-2024學年第一學期期末試卷
- 小學課后服務(wù)經(jīng)費管理方案
- 道路綠化養(yǎng)護道路綠化養(yǎng)護方案
- DL-T 5117-2021水下不分散混凝土試驗規(guī)程-PDF解密
- 寶馬購車合同
- 神經(jīng)內(nèi)科品管圈成果匯報-提高腦卒中偏癱患者早期自我肢體功能鍛煉規(guī)范執(zhí)行率
- 缺血性腦卒中靜脈溶栓護理
評論
0/150
提交評論