我們身邊的軸對稱圖形八年級數(shù)學(xué)教案_第1頁
我們身邊的軸對稱圖形八年級數(shù)學(xué)教案_第2頁
我們身邊的軸對稱圖形八年級數(shù)學(xué)教案_第3頁
我們身邊的軸對稱圖形八年級數(shù)學(xué)教案_第4頁
我們身邊的軸對稱圖形八年級數(shù)學(xué)教案_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

我們身邊的軸對稱圖形八年級數(shù)學(xué)教

我們身邊的軸對稱圖形八年級數(shù)學(xué)教案「篇一」

教材分析

本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平

方公式的兩種形式:

1、以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會、參與科學(xué)探

究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)

系。通過學(xué)生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次

的檢驗,得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達(dá)與交流等活動,獲得知

識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

2、用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方

法。

學(xué)情分析

1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識和技能:

①同類項的定義。

②合并同類項法則

③多項式乘以多項式法則o

2、學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:

在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目

的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

教學(xué)目標(biāo)

(一)教學(xué)目標(biāo):

1、經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號感和推力能力。

2、會推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡單的計算。

(-)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認(rèn)識有理數(shù)、實

數(shù)、代數(shù)式;掌握必要的運(yùn)算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和

變化規(guī)律,并能運(yùn)用代數(shù)式;不等式、函數(shù)等進(jìn)行描述。

(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋

求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對

解決問題過程的反思,獲得解決問題的經(jīng)驗。

(五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨立克服困難和運(yùn)用

知識解決問題的成功體驗,有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從

交流中獲益。

教學(xué)重點和難點

重點:能運(yùn)用完全平方公式進(jìn)行簡單的計算。

難點:會推導(dǎo)完全平方公式

教學(xué)過程

教學(xué)過程設(shè)計如下:

〈一〉、提出問題

[引入]同學(xué)們,前面我們學(xué)習(xí)了多項式乘多項式法則和合并同類項法則,通過

運(yùn)算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關(guān)系嗎?

(2m+3n)2=,(-2m~3n)2=?

(2m-3n)2=,(-2m+3n)2=。

〈二〉、分析問題

1、[學(xué)生回答]分組交流、討論

(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2。

(2m-3n)2=4m2T2mn+9n2,(-2m+3n)2=4m272mn+9n2。

(1)原式的特點。

(2)結(jié)果的項數(shù)特點。

(3)三項系數(shù)的特點(特別是符號的特點)。

(4)三項與原多項式中兩個單項式的關(guān)系。

2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:

兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2?

〈三〉、運(yùn)用公式,解決問題

1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

(m+n)2=,(m-n)2=。

(-m+n)2=,(-m-n)2=?

(a+3)2-,(-c+5)2-。

(-7-a)2=(0.5-a)2=□

2、判斷:

①(a-2b)2=a2-2ab+b2

②(2m+n)2=2m2+4mn+n2

③(-n-3m)2=n2-6mn+9m2

④(5a+0.2b)2=25a2+5ab+0.4b2

⑤(5a-0.2b)2=5a2-5ab+0.04b2

⑥(-a-2b)2=(a+2b)2

⑦(2a-4b)2=(4a-2b)2

⑧(-5m+n)2=(-n+5m)2

3、一現(xiàn)身手

①(x+y)2=;②(-y-x)2=_

③(2x+3)2=;④(3a-2)2=_

⑤(2x+3y)2=;⑥(4x-5y)2=_

⑦(0.5m+n)2=;⑧(a-0.6b)2=

〈四〉、[學(xué)生小結(jié)]

你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?

(1)公式右邊共有3項。

(2)兩個平方項符號永遠(yuǎn)為正。

(3)中間項的符號由等號左邊的兩項符號是否相同決定。

(4)中間項是等號左邊兩項乘積的2倍。

〈五〉、探險之旅

(1)(-3a+2b)2=

(2)(-7-2m)2=______________________________________

(3)(-0.5m+2n)2=

(4)(3/5a-l/2b)2=____________________________________

(5)(mn+3)2-______________________________

(6)(a2b-0.2)2=__________________________________

(7)(2xy2-3x2y)2=_

(8)(2n3-3m3)2=...

板書設(shè)計

完全平方公式

兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

(a+b)2=a2+2ab+b2;

兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

我們身邊的軸對稱圖形八年級數(shù)學(xué)教案「篇二」

教材分析

1、本小節(jié)內(nèi)容安排在第十四章“軸對稱”的第三節(jié)。等腰三角形是一種特殊

的三角形,它是軸對稱圖形,可以借助軸對稱變換來研究等腰三角形的一些特殊性

質(zhì)。這一節(jié)的主要內(nèi)容是等腰三角形的性質(zhì)與判定,以及等邊三角形的相關(guān)知識,

重點是等腰三角形的性質(zhì)與判定,它是研究等邊三角形,是證明線段相等角相等的

重要依據(jù),這也是全章的重點之一。

2、本節(jié)重在呈現(xiàn)一個動手操作得出概念、觀察實驗得出性質(zhì)、推理證明論證

性質(zhì)的過程,學(xué)生通過學(xué)習(xí),既體會到一個觀察、實驗、猜想、論證的研究幾何圖

形問題的全過程,又能夠運(yùn)用等腰三角形的性質(zhì)解決有關(guān)的問題,提高運(yùn)用知識和

技能解決問題的能力。

學(xué)情分析

1、學(xué)生在此之前已接觸過等腰三角形,具有運(yùn)用全等三角形的判定及軸對稱

的知識和技能,本節(jié)教學(xué)要突出“自主探究”的特點,即教師引導(dǎo)學(xué)生通過觀察、

實驗、猜想、論證,得出等腰三角形的性質(zhì),讓學(xué)生做學(xué)習(xí)的主人,享受探求新

知、獲得新知的樂趣。

2、在與等腰三角形有關(guān)的一些命題的證明過程中,會遇到一些添加輔助線的

問題,這會給學(xué)生的學(xué)習(xí)帶來困難。另外,以前學(xué)生證明問題是習(xí)慣于找全等三角

形,形成了依賴全等三角形的思維定勢,對于可直接利用等腰三角形性質(zhì)的問題,

沒有注意選擇簡便方法。

教學(xué)目標(biāo)

知識技能:1、理解掌握等腰三角形的性質(zhì)。

2、運(yùn)用等腰三角形的性質(zhì)進(jìn)行證明和計算。

數(shù)學(xué)思考:1、觀察等腰三角形的對稱性,發(fā)展形象思維。

2、通過時間、觀察、證明等腰三角形性質(zhì),發(fā)展學(xué)生合情推理能力和演繹推

理能力。

情感態(tài)度:引導(dǎo)學(xué)生對圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在

運(yùn)用數(shù)學(xué)知識解決問題的活動中獲取成功的體驗,建立學(xué)習(xí)的自信心。

教學(xué)重點和難點

重點:等腰三角形的性質(zhì)及應(yīng)用。

難點:等腰三角形的性質(zhì)證明。

我們身邊的軸對稱圖形八年級數(shù)學(xué)教案「篇三」

教學(xué)目標(biāo):

1、知識目標(biāo):了解圖案最常見的構(gòu)圖方式:軸對稱、平移、旋轉(zhuǎn),理解簡單

圖案設(shè)計的意圖。認(rèn)識和欣賞平移,旋轉(zhuǎn)在現(xiàn)實生活中的應(yīng)用,能夠靈活運(yùn)用軸對

稱、平移、旋轉(zhuǎn)的組合,設(shè)計出簡單的圖案。

2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計的過程,培養(yǎng)學(xué)生收集和

整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。

3、情感體驗點:經(jīng)歷對典型圖案設(shè)計意圖的分析,進(jìn)一步發(fā)展學(xué)生的空間觀

念,增強(qiáng)審美意識,培養(yǎng)學(xué)生積極進(jìn)取的生活態(tài)度。

重點與難點:

重點:靈活運(yùn)用軸對稱、平移、旋轉(zhuǎn)等方法及它們的組合進(jìn)行的圖案設(shè)計。

難點:分析典型圖案的設(shè)計意圖。

疑點:在設(shè)計的圖案中清晰地表現(xiàn)自己的設(shè)計意圖

教具學(xué)具準(zhǔn)備:

提前一周布置學(xué)生以小組為單位,通過各種渠道收集到的圖案、圖標(biāo)的剪貼、

臨摹以及。多種常見的圖案及其形成過程的動畫演示。

教學(xué)過程設(shè)計:

1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個展示生活中常見的典型圖案,并讓學(xué)生

試著說一說每種圖案標(biāo)志的對象。(展示課本圖3—23)

明確在欣賞了圖案后,簡單地復(fù)習(xí)旋轉(zhuǎn)的概念,為下面圖案的設(shè)計作好理論準(zhǔn)

備。對教材給出的六個圖案通過觀察、分析進(jìn)行議論交流,讓學(xué)生初步了解圖案的

設(shè)計中常常運(yùn)用圖形變換的思想方法,為學(xué)生自己設(shè)計圖案指明方向。其中圖

(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說

說每個旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以

通過軸對稱變換形成(可以讓學(xué)生指出對軸對稱及對稱軸的條數(shù)),而圖⑵可以通

過平移形成。

2、課本

1欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。

評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學(xué)生逐步

能夠進(jìn)行圖案設(shè)計,同時了解軸對稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例

題解答的關(guān)鍵是確定“基本圖案”,然后再運(yùn)用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋

轉(zhuǎn)中心可以為圖形上某一特征的點。

評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式

也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。

(二)課內(nèi)練習(xí)

(1)以小組為單位,由每組指定一個同學(xué)展示該組搜集得到的圖案,并在全班

交流。

(2)利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對稱、中心對稱等方法進(jìn)行

圖案設(shè)計,并簡要說明自己的設(shè)計意圖。

(三)議一議

生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個,并與同伴進(jìn)行交

流。

(四)課時小結(jié)

本課時的重點是了解平移、旋轉(zhuǎn)和軸對稱變換是圖案設(shè)計的基本方法,并能運(yùn)

用這些變換設(shè)計出一些簡單的圖案。

通過今天的學(xué)習(xí),你對圖案的設(shè)計又增加了哪些新的認(rèn)識?(可以利用平移、旋

轉(zhuǎn)、軸對稱等多種方法來設(shè)計,而且設(shè)計的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是

圖案的設(shè)計一定要新穎,獨特,這樣才能使人過目不忘,達(dá)到標(biāo)志的效果。)

八年級數(shù)學(xué)上冊教案(五)延伸拓展

進(jìn)一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計它,并結(jié)合實際背景分析

它的設(shè)計意圖。

我們身邊的軸對稱圖形八年級數(shù)學(xué)教案「篇四」

教學(xué)內(nèi)容分析:

⑴學(xué)習(xí)特殊的平行四邊形一正方形,它的特殊的性質(zhì)和判定。

⑵前面學(xué)習(xí)了平行四邊形、矩形菱形,類比他們的性質(zhì)與判斷,有利于對正方

形的研究。

⑶對本節(jié)的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生分類研究的思想,并且建立新舊知識的聯(lián)

系,類比的基礎(chǔ)上進(jìn)行歸納,梳理知識,進(jìn)一步發(fā)展學(xué)生的推理能力。

學(xué)生分析:

⑴學(xué)生在小學(xué)初步認(rèn)識了正方形,并且本節(jié)課之前,學(xué)生又學(xué)習(xí)了幾種平行四

邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗與知識基礎(chǔ)。

⑵學(xué)生在上幾節(jié)已有了推理的經(jīng)歷,但是對于證明,學(xué)生的思維能力還不成

熟,有待于提高。

教學(xué)目標(biāo):

⑴知識與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會利

用性質(zhì)與判定進(jìn)行簡單的說理。

⑵過程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判

定。通過運(yùn)用提高學(xué)生的推理能力。

⑶情感態(tài)度與價值觀:在學(xué)習(xí)中體會正方形的完美性,通過活動獲得成功的喜

悅與自信。

重點:

掌握正方形的性質(zhì)與判定,并進(jìn)行簡單的推理。

難點:

探索正方形的判定,發(fā)展學(xué)生的推理能

教學(xué)方法:

類比與探究

教具準(zhǔn)備:

可以活動的四邊形模型。

教學(xué)過程:

復(fù)習(xí)鞏固,建立聯(lián)系。

【教師活動】

問題設(shè)置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?

②的四邊形是平行四邊形。的平行四邊形是矩形。的平行四邊形是菱形。的四

邊形是矩形。的四邊形是菱形。

【學(xué)生活動】

學(xué)生回憶,并舉手回答,對于填空題,讓更多的學(xué)生參與,說出更多的答案。

【教師活動】

評析學(xué)生的結(jié)果,給予表揚(yáng)。

總結(jié)性質(zhì)從邊角對角線考慮,在填空時也考慮這幾方面之外,還應(yīng)該考慮三者

之間的聯(lián)系與區(qū)別。

演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。

二:動手操作,探索發(fā)現(xiàn)。

活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所

示,沿著B'E剪下,能得到什么圖形?

【學(xué)生活動】

學(xué)生拿出自備矩形紙片,動手操作,不難發(fā)現(xiàn)它是正方形。

設(shè)置問題:①什么是正方形?

觀察發(fā)現(xiàn),從活動中體會。

【教師活動】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。

【學(xué)生活動】認(rèn)真觀察變化過程,思考之間的聯(lián)系,舉手回答設(shè)置問題。

設(shè)置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?

【學(xué)生活動】

小組討論,分組回答。

【教師活動】

總結(jié)板書:

㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。

設(shè)置問題③正方形有那些性質(zhì)?

【學(xué)生活動】

小組討論,舉手搶答。

【教師活動】

表揚(yáng)學(xué)生發(fā)言,板書學(xué)生發(fā)現(xiàn),。正方形每一條對角線平分一組對角

活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對

稱軸?

學(xué)生活動

折紙發(fā)現(xiàn),說出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對稱圖形。

教師活動

演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號內(nèi)容,出示一下問

題:你還可以怎樣填空?

的菱形是正方形,的矩形是正方形,的平行四邊形是正方形,的四邊形是正方

形。

學(xué)生活動

小組充分交流,表達(dá)不同的意見。

教師活動

評析活動,總結(jié)發(fā)現(xiàn):

一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;

有一個角是直角的菱形是正方形,對角線相等的菱形是正方形;

有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相

平分的平行四邊形是正方形;

四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四

邊形是正方形。

以上是正方形的'判定方法。

正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現(xiàn)在哪

里?生活中有哪些利用正方形的例子?

學(xué)生交流,感受正方形

三,應(yīng)用體驗,推理證明。

出示例一:正方形ABCD的兩條對角線AC,BD交與0,AB長4cm,求AC,A0長,

及的度數(shù)。

方法一解:???四邊形ABCD是正方形

AZABC=90°(正方形的四個角是直角)。

BC=AB=4cm(正方形的四條邊相等)

/.=45°(等腰直角三角形的底角是45°)

利用勾股定理可知,AC===4cm

VA0=AC(正方形的對角線互相平分)

/.A0=義4=2cm

方法二:證明AAOB是等腰直角三角形,即可得證。

學(xué)生活動

獨立思考,寫出推理過程,再進(jìn)行小組討論,并且各小組指派代表寫在黑板

上,共同交流。

教師活動

總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準(zhǔn)確利用條件,減少麻煩。評析解

題步驟,表揚(yáng)突出學(xué)生。

出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且

AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?

學(xué)生活動

小組交流,分析題意,整理思路,指名口答。

教師活動

說明思路,從已知出發(fā)或者從已有的判定加以選擇。

四,歸納新知,梳理知識。

這一節(jié)課你有什么收獲?

學(xué)生舉手談?wù)撟约旱氖斋@。

請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們

的關(guān)系。

發(fā)表評論

我們身邊的軸對稱圖形八年級數(shù)學(xué)教案「篇五」

一、教學(xué)目標(biāo)

1、理解一個數(shù)平方根和算術(shù)平方根的意義;

2、理解根號的意義,會用根號表示一個數(shù)的平方根和算術(shù)平方根;

3、通過本節(jié)的訓(xùn)練,提高學(xué)生的邏輯思維能力;

4、通過學(xué)習(xí)乘方和開方運(yùn)算是互為逆運(yùn)算,體驗各事物間的對立統(tǒng)一的辯證

關(guān)系,激發(fā)學(xué)生探索數(shù)學(xué)奧秘的興趣。

二、教學(xué)重點和難點

教學(xué)重點:平方根和算術(shù)平方根的概念及求法。

教學(xué)難點:平方根與算術(shù)平方根聯(lián)系與區(qū)別。

三、教學(xué)方法

講練結(jié)合

四、教學(xué)手段

幻燈片

五、教學(xué)過程

(-)提問

1、已知一正方形面積為50平方米,那么它的邊長應(yīng)為多少?

2、已知一個數(shù)的平方等于1000,那么這個數(shù)是多少?

3、一只容積為0.125立方米的正方體容器,它的棱長應(yīng)為多少?

這些問題的共同特點是:已知乘方的結(jié)果,求底數(shù)的值,如何解決這些問題

呢?這就是本節(jié)內(nèi)容所要學(xué)習(xí)的。下面作一個小練習(xí):

學(xué)生在完成此練習(xí)時.,最容易出現(xiàn)的錯誤是丟掉負(fù)數(shù)解,在教學(xué)時應(yīng)注意糾

正。

由練習(xí)引出平方根的概念。

(二)平方根概念

如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(二次方根)。

用數(shù)學(xué)語言表達(dá)即為:若x2=a,則x叫做a的平方根。

由練習(xí)知:±3是9的平方根;

±0.5是0.25的平方根;

0的平方根是0;

±0.09是0。0081的平方根。

由此我們看到+3與一3均為9的平方根,0的平方根是0,下面看這樣一道

題,填空:

()2=—4

學(xué)生思考后,得到結(jié)論此題無答案。反問學(xué)生為什么?因為正數(shù)、0、負(fù)數(shù)的

平方為非負(fù)數(shù)。由此我們可以得到結(jié)論,負(fù)數(shù)是沒有平方根的。下面總結(jié)一下平方

根的性質(zhì)(可由學(xué)生總結(jié),教師整理)。

(三)平方根性質(zhì)

1、一個正數(shù)有兩個平方根,它們互為相反數(shù)。

2、0有一個平方根,它是0本身。

3、負(fù)數(shù)沒有平方根。

(四)開平方

求一個數(shù)a的平方根的運(yùn)算,叫做開平方的運(yùn)算。

由練習(xí)我們看到+3與一3的平方是9,9的平方根是+3和一3,可見平方運(yùn)算

與開平方運(yùn)算互為逆運(yùn)算。根據(jù)這種關(guān)系,我們可以通過平方運(yùn)算來求一個數(shù)的平

方根。與其他運(yùn)算法則不同之處在于只能對非負(fù)數(shù)進(jìn)行運(yùn)算,而且正數(shù)的運(yùn)算結(jié)果

是兩個。

(五)平方根的表示方法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論