版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東省青島三中2024屆高考數(shù)學押題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.2.在天文學中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.13.已知橢圓的左、右焦點分別為,,上頂點為點,延長交橢圓于點,若為等腰三角形,則橢圓的離心率A. B.C. D.4.已知P是雙曲線漸近線上一點,,是雙曲線的左、右焦點,,記,PO,的斜率為,k,,若,-2k,成等差數(shù)列,則此雙曲線的離心率為()A. B. C. D.5.設,則()A. B. C. D.6.已知是偶函數(shù),在上單調(diào)遞減,,則的解集是A. B.C. D.7.已知的展開式中第項與第項的二項式系數(shù)相等,則奇數(shù)項的二項式系數(shù)和為().A. B. C. D.8.2019年10月17日是我國第6個“扶貧日”,某醫(yī)院開展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動,現(xiàn)有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種9.已知正三角形的邊長為2,為邊的中點,、分別為邊、上的動點,并滿足,則的取值范圍是()A. B. C. D.10.已知函數(shù),,若方程恰有三個不相等的實根,則的取值范圍為()A. B.C. D.11.某工廠利用隨機數(shù)表示對生產(chǎn)的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001,002,……,599,600.從中抽取60個樣本,下圖提供隨機數(shù)表的第4行到第6行:若從表中第6行第6列開始向右讀取數(shù)據(jù),則得到的第6個樣本編號是()A.324 B.522 C.535 D.57812.下列圖形中,不是三棱柱展開圖的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.等腰直角三角形內(nèi)有一點P,,,,,則面積為______.14.展開式中的系數(shù)為_________.(用數(shù)字做答)15.若的展開式中只有第六項的二項式系數(shù)最大,則展開式中各項的系數(shù)和是________.16.若曲線(其中常數(shù))在點處的切線的斜率為1,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在銳角中,分別是角的對邊,,,且.(1)求角的大??;(2)求函數(shù)的值域.18.(12分)已知數(shù)列的前項和為,且滿足,各項均為正數(shù)的等比數(shù)列滿足(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和19.(12分)已知函數(shù),.(1)求證:在區(qū)間上有且僅有一個零點,且;(2)若當時,不等式恒成立,求證:.20.(12分)設函數(shù),.(1)求函數(shù)的極值;(2)對任意,都有,求實數(shù)a的取值范圍.21.(12分)已知函數(shù),其中,.(1)函數(shù)的圖象能否與x軸相切?若能,求出實數(shù)a;若不能,請說明理由.(2)若在處取得極大值,求實數(shù)a的取值范圍.22.(10分)已知函數(shù),為實數(shù),且.(Ⅰ)當時,求的單調(diào)區(qū)間和極值;(Ⅱ)求函數(shù)在區(qū)間,上的值域(其中為自然對數(shù)的底數(shù)).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構成,該多面體體積為.故選D.【點睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎題.2、A【解析】
由題意得到關于的等式,結合對數(shù)的運算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點睛】本題以天文學問題為背景,考查考生的數(shù)學應用意識?信息處理能力?閱讀理解能力以及指數(shù)對數(shù)運算.3、B【解析】
設,則,,因為,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設,則,在中,易得,所以,解得(負值舍去),所以橢圓的離心率.故選B.4、B【解析】
求得雙曲線的一條漸近線方程,設出的坐標,由題意求得,運用直線的斜率公式可得,,,再由等差數(shù)列中項性質(zhì)和離心率公式,計算可得所求值.【詳解】設雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設,,則,,,由,,成等差數(shù)列,可得,化為,即,可得,故選:.【點睛】本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和離心率,考查方程思想和運算能力,意在考查學生對這些知識的理解掌握水平.5、D【解析】
結合指數(shù)函數(shù)及對數(shù)函數(shù)的單調(diào)性,可判斷出,,,即可選出答案.【詳解】由,即,又,即,,即,所以.故選:D.【點睛】本題考查了幾個數(shù)的大小比較,考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性的應用,屬于基礎題.6、D【解析】
先由是偶函數(shù),得到關于直線對稱;進而得出單調(diào)性,再分別討論和,即可求出結果.【詳解】因為是偶函數(shù),所以關于直線對稱;因此,由得;又在上單調(diào)遞減,則在上單調(diào)遞增;所以,當即時,由得,所以,解得;當即時,由得,所以,解得;因此,的解集是.【點睛】本題主要考查由函數(shù)的性質(zhì)解對應不等式,熟記函數(shù)的奇偶性、對稱性、單調(diào)性等性質(zhì)即可,屬于??碱}型.7、D【解析】因為的展開式中第4項與第8項的二項式系數(shù)相等,所以,解得,所以二項式中奇數(shù)項的二項式系數(shù)和為.考點:二項式系數(shù),二項式系數(shù)和.8、B【解析】
分兩類:一類是醫(yī)院A只分配1人,另一類是醫(yī)院A分配2人,分別計算出兩類的分配種數(shù),再由加法原理即可得到答案.【詳解】根據(jù)醫(yī)院A的情況分兩類:第一類:若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當醫(yī)院B只有1人,則共有種不同分配方案,當醫(yī)院B有2人,則共有種不同分配方案,所以當醫(yī)院A只分配1人時,共有種不同分配方案;第二類:若醫(yī)院A分配2人,當乙在醫(yī)院A時,共有種不同分配方案,當乙不在A醫(yī)院,在B醫(yī)院時,共有種不同分配方案,所以當醫(yī)院A分配2人時,共有種不同分配方案;共有20種不同分配方案.故選:B【點睛】本題考查排列與組合的綜合應用,在做此類題時,要做到分類不重不漏,考查學生分類討論的思想,是一道中檔題.9、A【解析】
建立平面直角坐標系,求出直線,設出點,通過,找出與的關系.通過數(shù)量積的坐標表示,將表示成與的關系式,消元,轉化成或的二次函數(shù),利用二次函數(shù)的相關知識,求出其值域,即為的取值范圍.【詳解】以D為原點,BC所在直線為軸,AD所在直線為軸建系,設,則直線,設點,所以由得,即,所以,由及,解得,由二次函數(shù)的圖像知,,所以的取值范圍是.故選A.【點睛】本題主要考查解析法在向量中的應用,以及轉化與化歸思想的運用.10、B【解析】
由題意可將方程轉化為,令,,進而將方程轉化為,即或,再利用的單調(diào)性與最值即可得到結論.【詳解】由題意知方程在上恰有三個不相等的實根,即,①.因為,①式兩邊同除以,得.所以方程有三個不等的正實根.記,,則上述方程轉化為.即,所以或.因為,當時,,所以在,上單調(diào)遞增,且時,.當時,,在上單調(diào)遞減,且時,.所以當時,取最大值,當,有一根.所以恰有兩個不相等的實根,所以.故選:B.【點睛】本題考查了函數(shù)與方程的關系,考查函數(shù)的單調(diào)性與最值,轉化的數(shù)學思想,屬于中檔題.11、D【解析】
因為要對600個零件進行編號,所以編號必須是三位數(shù),因此按要求從第6行第6列開始向右讀取數(shù)據(jù),大于600的,重復出現(xiàn)的舍去,直至得到第六個編號.【詳解】從第6行第6列開始向右讀取數(shù)據(jù),編號內(nèi)的數(shù)據(jù)依次為:,因為535重復出現(xiàn),所以符合要求的數(shù)據(jù)依次為,故第6個數(shù)據(jù)為578.選D.【點睛】本題考查了隨機數(shù)表表的應用,正確掌握隨機數(shù)表法的使用方法是解題的關鍵.12、C【解析】
根據(jù)三棱柱的展開圖的可能情況選出選項.【詳解】由圖可知,ABD選項可以圍成三棱柱,C選項不是三棱柱展開圖.故選:C【點睛】本小題主要考查三棱柱展開圖的判斷,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用余弦定理計算,然后根據(jù)平方關系以及三角形面積公式,可得結果.【詳解】設由題可知:由,,,所以化簡可得:則或,即或由,所以所以故答案為:【點睛】本題主要考查余弦定理解三角形,仔細觀察,細心計算,屬基礎題.14、210【解析】
轉化,只有中含有,即得解.【詳解】只有中含有,其中的系數(shù)為故答案為:210【點睛】本題考查了二項式系數(shù)的求解,考查了學生概念理解,轉化劃歸,數(shù)學運算的能力,屬于中檔題.15、【解析】
由題意得出展開式中共有11項,;再令求得展開式中各項的系數(shù)和.【詳解】由的展開式中只有第六項的二項式系數(shù)最大,所以展開式中共有11項,所以;令,可求得展開式中各項的系數(shù)和是:.故答案為:1.【點睛】本小題主要考查二項式展開式的通項公式的運用,考查二項式展開式各項系數(shù)和的求法,屬于基礎題.16、【解析】
利用導數(shù)的幾何意義,由解方程即可.【詳解】由已知,,所以,解得.故答案為:.【點睛】本題考查導數(shù)的幾何意義,考查學生的基本運算能力,是一道基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由向量平行的坐標表示、正弦定理邊化角和兩角和差正弦公式可化簡求得,進而得到;(2)利用兩角和差余弦公式、二倍角和輔助角公式化簡函數(shù)為,根據(jù)的范圍可確定的范圍,結合正弦函數(shù)圖象可確定所求函數(shù)的值域.【詳解】(1),,由正弦定理得:,即,,,,又,.(2)在銳角中,,..,,,,函數(shù)的值域為.【點睛】本題考查三角恒等變換、解三角形和三角函數(shù)性質(zhì)的綜合應用問題;涉及到共線向量的坐標表示、利用三角恒等變換公式化簡求值、正弦定理邊化角的應用、正弦型函數(shù)值域的求解等知識.18、(1);(2)【解析】
(1)由化為,利用數(shù)列的通項公式和前n項和的關系,得到是首項為,公差為的等差數(shù)列求解.(2)由(1)得到,再利用錯位相減法求解.【詳解】(1)可以化為,,,,又時,數(shù)列從開始成等差數(shù)列,,代入得是首項為,公差為的等差數(shù)列,,.(2)由(1)得,,,兩式相減得,,.【點睛】本題主要考查數(shù)列的通項公式和前n項和的關系和錯位相減法求和,還考查了運算求解的能力,屬于中檔題.19、(1)詳見解析;(2)詳見解析.【解析】
(1)利用求導數(shù),判斷在區(qū)間上的單調(diào)性,然后再證異號,即可證明結論;(2)當時,不等式恒成立,分離參數(shù)只需時,恒成立,設(),需,根據(jù)(1)中的結論先求出,再構造函數(shù)結合導數(shù)法,證明即可.【詳解】(1),令,則,所以在區(qū)間上是增函數(shù),則,所以在區(qū)間上是增函數(shù).又因為,,所以在區(qū)間上有且僅有一個零點,且.(2)由題意,在區(qū)間上恒成立,即在區(qū)間上恒成立,當時,;當時,恒成立,設(),所以.由(1)可知,,使,所以,當時,,當時,,由此在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,所以.又因為,所以,從而,所以.令,,則,所以在區(qū)間上是增函數(shù),所以,故.【點睛】本題考查導數(shù)的綜合應用,涉及到函數(shù)的單調(diào)性、函數(shù)的零點、極值最值、不等式的證明,分離參數(shù)是解題的關鍵,意在考查邏輯推理、數(shù)學計算能力,屬于較難題.20、(1)當時,無極值;當時,極小值為;(2).【解析】
(1)求導,對參數(shù)進行分類討論,即可容易求得函數(shù)的極值;(2)構造函數(shù),兩次求導,根據(jù)函數(shù)單調(diào)性,由恒成立問題求參數(shù)范圍即可.【詳解】(1)依題,當時,,函數(shù)在上單調(diào)遞增,此時函數(shù)無極值;當時,令,得,令,得所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.此時函數(shù)有極小值,且極小值為.綜上:當時,函數(shù)無極值;當時,函數(shù)有極小值,極小值為.(2)令易得且,令所以,因為,,從而,所以,在上單調(diào)遞增.又若,則所以在上單調(diào)遞增,從而,所以時滿足題意.若,所以,,在中,令,由(1)的單調(diào)性可知,有最小值,從而.所以所以,由零點存在性定理:,使且在上單調(diào)遞減,在上單調(diào)遞增.所以當時,.故當,不成立.綜上所述:的取值范圍為.【點睛】本題考查利用導數(shù)研究含參函數(shù)的極值,涉及由恒成立問題求參數(shù)范圍的問題,屬壓軸題.21、(1)答案見解析(2)【解析】
(1)假設函數(shù)的圖象與x軸相切于,根據(jù)相切可得方程組,看方程是否有解即可;(2)求出的導數(shù),設(),根據(jù)函數(shù)的單調(diào)性及在處取得極大值求出a的范圍即可.【詳解】(1)函數(shù)的圖象不能與x軸相切,理由若下:.假設函數(shù)的圖象與x軸相切于則即顯然,,代入中得,無實數(shù)解.故函數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年某國企人事檔案專員招聘備考題庫參考答案詳解
- 2025年高職城市軌道交通工程技術(軌道施工維護)試題及答案
- 2025年高職作物育種(技巧應用實操)試題及答案
- 2025年高職(建設工程管理)工程合同管理綜合測試試題及答案
- 2025年中職圖書館學(圖書借閱服務)試題及答案
- 2025年高職(文秘)會議組織與管理綜合測試題及答案
- 2025年大學醫(yī)學(生理學)試題及答案
- 2025年高職人力資源管理(員工招聘與配置)試題及答案
- 2025年高職(中藥學)中藥學進階階段測試試題及答案
- 2025年高職幼兒心理(幼兒心理應用)試題及答案
- 化工廠班組安全培訓課件
- 2025四川成都農(nóng)商銀行招聘10人筆試備考題庫及答案解析
- 營業(yè)執(zhí)照借用協(xié)議合同
- 2025年秋蘇教版(新教材)初中生物八年級上冊期末知識點復習卷及答案(共三套)
- 2025年小升初學校家長面試題庫及答案
- WB/T 1019-2002菱鎂制品用輕燒氧化鎂
- GB/T 6003.2-1997金屬穿孔板試驗篩
- GB/T 4074.21-2018繞組線試驗方法第21部分:耐高頻脈沖電壓性能
- 完整word版毛澤東思想和中國特色社會主義理論體系概論知識點歸納
- GB/T 13350-2008絕熱用玻璃棉及其制品
- 《語言的演變》-完整版課件
評論
0/150
提交評論