2023-2024學年江蘇省蘇州市吳中學、吳江、相城區(qū)中考考前最后一卷數(shù)學試卷含解析_第1頁
2023-2024學年江蘇省蘇州市吳中學、吳江、相城區(qū)中考考前最后一卷數(shù)學試卷含解析_第2頁
2023-2024學年江蘇省蘇州市吳中學、吳江、相城區(qū)中考考前最后一卷數(shù)學試卷含解析_第3頁
2023-2024學年江蘇省蘇州市吳中學、吳江、相城區(qū)中考考前最后一卷數(shù)學試卷含解析_第4頁
2023-2024學年江蘇省蘇州市吳中學、吳江、相城區(qū)中考考前最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年江蘇省蘇州市吳中學、吳江、相城區(qū)中考考前最后一卷數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在底邊BC為2,腰AB為2的等腰三角形ABC中,DE垂直平分AB于點D,交BC于點E,則△ACE的周長為()A.2+ B.2+2 C.4 D.32.為弘揚傳統(tǒng)文化,某校初二年級舉辦傳統(tǒng)文化進校園朗誦大賽,小明同學根據(jù)比賽中九位評委所給的某位參賽選手的分數(shù),制作了一個表格,如果去掉一個最高分和一個最低分,則表中數(shù)據(jù)一定不發(fā)生變化的是()中位數(shù)眾數(shù)平均數(shù)方差9.29.39.10.3A.中位數(shù) B.眾數(shù) C.平均數(shù) D.方差3.如圖,左、右并排的兩棵樹AB和CD,小樹的高AB=6m,大樹的高CD=9m,小明估計自己眼睛距地面EF=1.5m,當他站在F點時恰好看到大樹頂端C點.已知此時他與小樹的距離BF=2m,則兩棵樹之間的距離BD是()A.1m B.m C.3m D.m4.運用乘法公式計算(3﹣a)(a+3)的結果是()A.a(chǎn)2﹣6a+9 B.a(chǎn)2﹣9 C.9﹣a2 D.a(chǎn)2﹣3a+95.如圖,一個可以自由轉動的轉盤被等分成6個扇形區(qū)域,并涂上了相應的顏色,轉動轉盤,轉盤停止后,指針指向藍色區(qū)域的概率是()A. B.C. D.6.如圖,已知?ABCD中,E是邊AD的中點,BE交對角線AC于點F,那么S△AFE:S四邊形FCDE為()A.1:3 B.1:4 C.1:5 D.1:67.已知⊙O的半徑為5,若OP=6,則點P與⊙O的位置關系是()A.點P在⊙O內(nèi) B.點P在⊙O外 C.點P在⊙O上 D.無法判斷8.下列運算正確的是()A.(a2)3=a5 B.(a-b)2=a2-b2 C.3=3 D.=-39.若正比例函數(shù)y=mx(m是常數(shù),m≠0)的圖象經(jīng)過點A(m,4),且y的值隨x值的增大而減小,則m等于()A.2 B.﹣2 C.4 D.﹣410.下列各運算中,計算正確的是()A.a(chǎn)12÷a3=a4 B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2 D.2a?3a=6a2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在兩個同心圓中,四條直徑把大圓分成八等份,若往圓面投擲飛鏢,則飛鏢落在黑色區(qū)域的概率是_______.12.計算:(π﹣3)0+(﹣)﹣1=_____.13.如圖,AB是半徑為2的⊙O的弦,將沿著弦AB折疊,正好經(jīng)過圓心O,點C是折疊后的上一動點,連接并延長BC交⊙O于點D,點E是CD的中點,連接AC,AD,EO.則下列結論:①∠ACB=120°,②△ACD是等邊三角形,③EO的最小值為1,其中正確的是_____.(請將正確答案的序號填在橫線上)14.如圖,在長方形ABCD中,AF⊥BD,垂足為E,AF交BC于點F,連接DF.圖中有全等三角形_____對,有面積相等但不全等的三角形_____對.15.關于x的一元二次方程(k-1)x2+6x+k2-k=0的一個根是0,則k的值是______.16.已知函數(shù)y=-1,給出一下結論:①y的值隨x的增大而減?、诖撕瘮?shù)的圖形與x軸的交點為(1,0)③當x>0時,y的值隨x的增大而越來越接近-1④當x≤時,y的取值范圍是y≥1以上結論正確的是_________(填序號)三、解答題(共8題,共72分)17.(8分)某校學生會準備調(diào)查六年級學生參加“武術類”、“書畫類”、“棋牌類”、“器樂類”四類校本課程的人數(shù).(1)確定調(diào)查方式時,甲同學說:“我到六年級(1)班去調(diào)查全體同學”;乙同學說:“放學時我到校門口隨機調(diào)查部分同學”;丙同學說:“我到六年級每個班隨機調(diào)查一定數(shù)量的同學”.請指出哪位同學的調(diào)查方式最合理.類別頻數(shù)(人數(shù))頻率武術類0.25書畫類200.20棋牌類15b器樂類合計a1.00(2)他們采用了最為合理的調(diào)查方法收集數(shù)據(jù),并繪制了如圖所示的統(tǒng)計表和扇形統(tǒng)計圖.請你根據(jù)以上圖表提供的信息解答下列問題:①a=_____,b=_____;②在扇形統(tǒng)計圖中,器樂類所對應扇形的圓心角的度數(shù)是_____;③若該校六年級有學生560人,請你估計大約有多少學生參加武術類校本課程.18.(8分)為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計.現(xiàn)從該校隨機抽取名學生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學生只能選擇其中一項).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:求n的值;若該校學生共有1200人,試估計該校喜愛看電視的學生人數(shù);若調(diào)查到喜愛體育活動的4名學生中有3名男生和1名女生,現(xiàn)從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.19.(8分)計算:2﹣1+|﹣|++2cos30°20.(8分)龐亮和李強相約周六去登山,龐亮從北坡山腳C處出發(fā),以24米/分鐘的速度攀登,同時,李強從南坡山腳B處出發(fā).如圖,已知小山北坡的坡度,山坡長為240米,南坡的坡角是45°.問李強以什么速度攀登才能和龐亮同時到達山頂A?(將山路AB、AC看成線段,結果保留根號)21.(8分)(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點,連接BE并延長與AD的延長線相較于點F.(1)求證:四邊形BDFC是平行四邊形;(2)若△BCD是等腰三角形,求四邊形BDFC的面積.22.(10分)在數(shù)學活動課上,老師提出了一個問題:把一副三角尺如圖擺放,直角三角尺的兩條直角邊分別垂直或平行,60°角的頂點在另一個三角尺的斜邊上移動,在這個運動過程中,有哪些變量,能研究它們之間的關系嗎?小林選擇了其中一對變量,根據(jù)學習函數(shù)的經(jīng)驗,對它們之間的關系進行了探究.下面是小林的探究過程,請補充完整:(1)畫出幾何圖形,明確條件和探究對象;如圖2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是線段AB上一動點,射線DE⊥BC于點E,∠EDF=60°,射線DF與射線AC交于點F.設B,E兩點間的距離為xcm,E,F(xiàn)兩點間的距離為ycm.(2)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:x/cm0123456y/cm6.95.34.03.34.56(說明:補全表格時相關數(shù)據(jù)保留一位小數(shù))(3)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;(4)結合畫出的函數(shù)圖象,解決問題:當△DEF為等邊三角形時,BE的長度約為cm.23.(12分)如圖(1),P為△ABC所在平面上一點,且∠APB=∠BPC=∠CPA=120°,則點P叫做△ABC的費馬點.(1)如果點P為銳角△ABC的費馬點,且∠ABC=60°.①求證:△ABP∽△BCP;②若PA=3,PC=4,則PB=.(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD相交于P點.如圖(2)①求∠CPD的度數(shù);②求證:P點為△ABC的費馬點.24.在“弘揚傳統(tǒng)文化,打造書香校園”活動中,學校計劃開展四項活動:“A-國學誦讀”、“B-演講”、“C-課本劇”、“D-書法”,要求每位同學必須且只能參加其中一項活動,學校為了了解學生的意思,隨機調(diào)查了部分學生,結果統(tǒng)計如下:(1)根據(jù)題中信息補全條形統(tǒng)計圖.(2)所抽取的學生參加其中一項活動的眾數(shù)是.(3)學?,F(xiàn)有800名學生,請根據(jù)圖中信息,估算全校學生希望參加活動A有多少人?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:根據(jù)線段垂直平分線的性質,把三角形的周長問題轉化為線段和的問題解決即可.詳解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周長=AC+AE+CE=AC+BC=2+2,故選B.點睛:本題考查了等腰三角形性質和線段垂直平分線性質的應用,注意:線段垂直平分線上的點到線段兩個端點的距離相等.2、A【解析】

根據(jù)中位數(shù):將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)可得答案.【詳解】如果去掉一個最高分和一個最低分,則表中數(shù)據(jù)一定不發(fā)生變化的是中位數(shù).故選A.點睛:本題主要考查了中位數(shù),關鍵是掌握中位數(shù)定義.3、B【解析】

由∠AGE=∠CHE=90°,∠AEG=∠CEH可證明△AEG∽△CEH,根據(jù)相似三角形對應邊成比例求出GH的長即BD的長即可.【詳解】由題意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,∵AG⊥EH,CH⊥EH,∴∠AGE=∠CHE=90°,∵∠AEG=∠CEH,∴△AEG∽△CEH,∴==,即=,解得:GH=,則BD=GH=m,故選:B.【點睛】本題考查了相似三角形的應用,解題的關鍵是從實際問題中抽象出相似三角形.4、C【解析】

根據(jù)平方差公式計算可得.【詳解】解:(3﹣a)(a+3)=32﹣a2=9﹣a2,故選C.【點睛】本題主要考查平方差公式,解題的關鍵是應用平方差公式計算時,應注意以下幾個問題:①左邊是兩個二項式相乘,并且這兩個二項式中有一項完全相同,另一項互為相反數(shù);②右邊是相同項的平方減去相反項的平方.5、B【解析】試題解析:∵轉盤被等分成6個扇形區(qū)域,而黃色區(qū)域占其中的一個,∴指針指向黃色區(qū)域的概率=.故選A.考點:幾何概率.6、C【解析】

根據(jù)AE∥BC,E為AD中點,找到AF與FC的比,則可知△AEF面積與△FCE面積的比,同時因為△DEC面積=△AEC面積,則可知四邊形FCDE面積與△AEF面積之間的關系.【詳解】解:連接CE,∵AE∥BC,E為AD中點,

∴.

∴△FEC面積是△AEF面積的2倍.

設△AEF面積為x,則△AEC面積為3x,

∵E為AD中點,

∴△DEC面積=△AEC面積=3x.

∴四邊形FCDE面積為1x,

所以S△AFE:S四邊形FCDE為1:1.

故選:C.【點睛】本題考查相似三角形的判定和性質、平行四邊形的性質,解題關鍵是通過線段的比得到三角形面積的關系.7、B【解析】

比較OP與半徑的大小即可判斷.【詳解】,,,點P在外,故選B.【點睛】本題考查點與圓的位置關系,記住:點與圓的位置關系有3種設的半徑為r,點P到圓心的距離,則有:點P在圓外;點P在圓上;點P在圓內(nèi).8、D【解析】試題分析:A、原式=a6,錯誤;B、原式=a2﹣2ab+b2,錯誤;C、原式不能合并,錯誤;D、原式=﹣3,正確,故選D考點:完全平方公式;合并同類項;同底數(shù)冪的乘法;平方差公式.9、B【解析】

利用待定系數(shù)法求出m,再結合函數(shù)的性質即可解決問題.【詳解】解:∵y=mx(m是常數(shù),m≠0)的圖象經(jīng)過點A(m,4),∴m2=4,∴m=±2,∵y的值隨x值的增大而減小,∴m<0,∴m=﹣2,故選:B.【點睛】本題考查待定系數(shù)法,一次函數(shù)的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.10、D【解析】【分析】根據(jù)同底數(shù)冪的除法、積的乘方、完全平方公式、單項式乘法的法則逐項計算即可得.【詳解】A、原式=a9,故A選項錯誤,不符合題意;B、原式=27a6,故B選項錯誤,不符合題意;C、原式=a2﹣2ab+b2,故C選項錯誤,不符合題意;D、原式=6a2,故D選項正確,符合題意,故選D.【點睛】本題考查了同底數(shù)冪的除法、積的乘方、完全平方公式、單項式乘法等運算,熟練掌握各運算的運算法則是解本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】試題解析:∵兩個同心圓被等分成八等份,飛鏢落在每一個區(qū)域的機會是均等的,其中白色區(qū)域的面積占了其中的四等份,∴P(飛鏢落在白色區(qū)域)=.12、-1【解析】

先計算0指數(shù)冪和負指數(shù)冪,再相減.【詳解】(π﹣3)0+(﹣)﹣1,=1﹣3,=﹣1,故答案是:﹣1.【點睛】考查了0指數(shù)冪和負指數(shù)冪,解題關鍵是運用任意數(shù)的0次冪為1,a-1=.13、①②【解析】

根據(jù)折疊的性質可知,結合垂徑定理、三角形的性質、同圓或等圓中圓周角與圓心的性質等可以判斷①②是否正確,EO的最小值問題是個難點,這是一個動點問題,只要把握住E在什么軌跡上運動,便可解決問題.【詳解】如圖1,連接OA和OB,作OF⊥AB.

由題知:沿著弦AB折疊,正好經(jīng)過圓心O

∴OF=OA=OB

∴∠AOF=∠BOF=60°

∴∠AOB=120°

∴∠ACB=120°(同弧所對圓周角相等)

∠D=∠AOB=60°(同弧所對的圓周角是圓心角的一半)

∴∠ACD=180°-∠ACB=60°

∴△ACD是等邊三角形(有兩個角是60°的三角形是等邊三角形)

故,①②正確

下面研究問題EO的最小值是否是1

如圖2,連接AE和EF

∵△ACD是等邊三角形,E是CD中點

∴AE⊥BD(三線合一)

又∵OF⊥AB

∴F是AB中點

即,EF是△ABE斜邊中線

∴AF=EF=BF

即,E點在以AB為直徑的圓上運動.

所以,如圖3,當E、O、F在同一直線時,OE長度最小

此時,AE=EF,AE⊥EF

∵⊙O的半徑是2,即OA=2,OF=1

∴AF=(勾股定理)

∴OE=EF-OF=AF-OF=-1

所以,③不正確

綜上所述:①②正確,③不正確.

故答案是:①②.【點睛】考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.也考查了垂徑定理.14、11【解析】

根據(jù)長方形的對邊相等,每一個角都是直角可得AB=CD,AD=BC,∠BAD=∠C=90°,然后利用“邊角邊”證明Rt△ABD和Rt△CDB全等;根據(jù)等底等高的三角形面積相等解答.【詳解】有,Rt△ABD≌Rt△CDB,理由:在長方形ABCD中,AB=CD,AD=BC,∠BAD=∠C=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(SAS);有,△BFD與△BFA,△ABD與△AFD,△ABE與△DFE,△AFD與△BCD面積相等,但不全等.故答案為:1;1.【點睛】本題考查了全等三角形的判定,長方形的性質,以及等底等高的三角形的面積相等.15、2.【解析】試題解析:由于關于x的一元二次方程的一個根是2,把x=2代入方程,得,解得,k2=2,k2=2當k=2時,由于二次項系數(shù)k﹣2=2,方程不是關于x的二次方程,故k≠2.所以k的值是2.故答案為2.16、②③【解析】(1)因為函數(shù)的圖象有兩個分支,在每個分支上y隨x的增大而減小,所以結論①錯誤;(2)由解得:,∴的圖象與x軸的交點為(1,0),故②中結論正確;(3)由可知當x>0時,y的值隨x的增大而越來越接近-1,故③中結論正確;(4)因為在中,當時,,故④中結論錯誤;綜上所述,正確的結論是②③.故答案為:②③.三、解答題(共8題,共72分)17、(1)見解析;(2)①a=100,b=0.15;②144°;③140人.【解析】

(1)采用隨機調(diào)查的方式比較合理,隨機調(diào)查的關鍵是調(diào)查的隨機性,這樣才合理;

(2)①用喜歡書畫類的頻數(shù)除以喜歡書畫類的頻率即可求得a值,用喜歡棋牌類的人數(shù)除以總人數(shù)即可求得b值.②求得器樂類的頻率乘以360°即可.③用總人數(shù)乘以喜歡武術類的頻率即可求喜歡武術的總人數(shù).【詳解】(1)∵調(diào)查的人數(shù)較多,范圍較大,∴應當采用隨機抽樣調(diào)查,∵到六年級每個班隨機調(diào)查一定數(shù)量的同學相對比較全面,∴丙同學的說法最合理.(2)①∵喜歡書畫類的有20人,頻率為0.20,∴a=20÷0.20=100,b=15÷100=0.15;②∵喜歡器樂類的頻率為:1﹣0.25﹣0.20﹣0.15=0.4,∴喜歡器樂類所對應的扇形的圓心角的度數(shù)為:360×0.4=144°;③喜歡武術類的人數(shù)為:560×0.25=140人.【點睛】本題考查了用樣本估計總體和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.18、(1)50;(2)240;(3).【解析】

用喜愛社會實踐的人數(shù)除以它所占的百分比得到n的值;先計算出樣本中喜愛看電視的人數(shù),然后用1200乘以樣本中喜愛看電視人數(shù)所占的百分比,即可估計該校喜愛看電視的學生人數(shù);畫樹狀圖展示12種等可能的結果數(shù),再找出恰好抽到2名男生的結果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1);(2)樣本中喜愛看電視的人數(shù)為(人,,所以估計該校喜愛看電視的學生人數(shù)為240人;(3)畫樹狀圖為:共有12種等可能的結果數(shù),其中恰好抽到2名男生的結果數(shù)為6,所以恰好抽到2名男生的概率.【點睛】本題考查了列表法與樹狀圖法;利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式計算事件A或事件B的概率,也考查了統(tǒng)計圖.19、+4.【解析】

原式利用負整數(shù)指數(shù)冪法則,二次根式性質,以及特殊角的三角函數(shù)值計算即可求出值.【詳解】原式=++2+2×=+4.【點睛】本題考查了實數(shù)的運算,涉及了負整數(shù)指數(shù)冪、特殊角的三角函數(shù)值、二次根式的化簡等,熟練掌握各運算的運算法則是解本題的關鍵.20、李強以12米/分鐘的速度攀登才能和龐亮同時到達山頂A【解析】過點A作AD⊥BC于點D,在Rt△ADC中,由得tanC=∴∠C=30°∴AD=AC=×240=120(米)在Rt△ABD中,∠B=45°∴AB=AD=120(米)120÷(240÷24)=120÷10=12(米/分鐘)答:李強以12米/分鐘的速度攀登才能和龐亮同時到達山頂A21、(1)見解析;(2)62或3【解析】試題分析:(1)根據(jù)平行線的性質和中點的性質證明三角形全等,然后根據(jù)對角線互相平分的四邊形是平行四邊形完成證明;(2)由等腰三角形的性質,分三種情況:①BD=BC,②BD=CD,③BC=CD,分別求四邊形的面積.試題解析:(1)證明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是邊CD的中點∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四邊形BDFC是平行四邊形(2)若△BCD是等腰三角形①若BD=DC在Rt△ABD中,AB=B∴四邊形BDFC的面積為S=22×3=62②若BD=DC過D作BC的垂線,則垂足為BC得中點,不可能;③若BC=DC過D作DG⊥BC,垂足為G在Rt△CDG中,DG=D∴四邊形BDFC的面積為S=35考點:三角形全等,平行四邊形的判定,勾股定理,四邊形的面積22、(1)見解析;(1)3.5;(3)見解析;(4)3.1【解析】

根據(jù)題意作圖測量即可.【詳解】(1)取點、畫圖、測量,得到數(shù)據(jù)為3.5故答案為:3.5(3)由數(shù)據(jù)得(4)當△DEF為等邊三角形是,EF=DE,由∠B=45°,射線DE⊥BC于點E,則BE=EF.即y=x所以,當(1)中圖象與直線y=x相交時,交點橫坐標即為BE的長,由作圖、測量可知x約為3.1.【點睛】本題為動點問題的函數(shù)圖象探究題,解得關鍵是按照題意畫圖測量,并將條件轉化成函數(shù)圖象研究.23、(1)①證明見解析;②23【解析】試題分析:(1)①根據(jù)題意,利用內(nèi)角和定理及等式性質得到一對角相等,利用兩角相等的三角形相似即可得證;②由三角形ABP與三角形BCP相似,得比例,將PA與PC的長代入求出PB的長即可;(2)①根據(jù)三角形ABE與三角形ACD為等邊三角形,利用等邊三角形的性質得到兩對邊相等,兩個角為60°,利用等式的性質得到夾角相等,利用SAS得到三角形ACE與三角形ABD全等,利用全等三角形的對應角相等得到

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論