江蘇省高郵市重點名校2023-2024學年中考適應性考試數學試題含解析_第1頁
江蘇省高郵市重點名校2023-2024學年中考適應性考試數學試題含解析_第2頁
江蘇省高郵市重點名校2023-2024學年中考適應性考試數學試題含解析_第3頁
江蘇省高郵市重點名校2023-2024學年中考適應性考試數學試題含解析_第4頁
江蘇省高郵市重點名校2023-2024學年中考適應性考試數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省高郵市重點名校2023-2024學年中考適應性考試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,A、B、C是小正方形的頂點,且每個小正方形的邊長為1,則tan∠BAC的值為()A. B.1 C. D.2.如圖,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位線,延長DE交△ABC的外角∠ACM的平分線于點F,則線段DF的長為()A.7 B.8 C.9 D.103.如圖,AB為⊙O的直徑,CD是⊙O的弦,∠ADC=35°,則∠CAB的度數為(

)A.35° B.45° C.55° D.65°4.如圖,在平面直角坐標系中,半徑為2的圓P的圓心P的坐標為(﹣3,0),將圓P沿x軸的正方向平移,使得圓P與y軸相切,則平移的距離為()A.1 B.3 C.5 D.1或55.已知方程組,那么x+y的值()A.-1 B.1 C.0 D.56.tan45o的值為()A. B.1 C. D.7.近似數精確到()A.十分位 B.個位 C.十位 D.百位8.一元一次不等式組2x+1>A.4B.5C.6D.79.如圖,把一個矩形紙片ABCD沿EF折疊后,點D、C分別落在D′、C′的位置,若∠EFB=65°,則∠AED′為()。A.70° B.65° C.50° D.25°10.如果解關于x的分式方程時出現(xiàn)增根,那么m的值為A.-2 B.2 C.4 D.-4二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,直線y1=mx經過P(2,1)和Q(-4,-2)兩點,且與直線y2=kx+b交于點P,則不等式kx+b>mx>-2的解集為_________________.12.如圖,AB是半圓O的直徑,E是半圓上一點,且OE⊥AB,點C為的中點,則∠A=__________°.13.在一個不透明的布袋中,紅色、黑色的玻璃球共有20個,這些球除顏色外其它完全相同.將袋中的球攪勻,從中隨機摸出一個球,記下顏色后再放回袋中,不斷地重復這個過程,摸了200次后,發(fā)現(xiàn)有60次摸到黑球,請你估計這個袋中紅球約有_____個.14.已知△ABC中,BC=4,AB=2AC,則△ABC面積的最大值為_______.15.如圖,△ABC中,∠A=80°,∠B=40°,BC的垂直平分線交AB于點D,聯(lián)結DC.如果AD=2,BD=6,那么△ADC的周長為.16.如圖,已知函數y=3x+b和y=ax﹣3的圖象交于點P(﹣2,﹣5),則根據圖象可得不等式3x+b>ax﹣3的解集是_____.三、解答題(共8題,共72分)17.(8分)如圖,AB是圓O的直徑,AC是圓O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=2.(1)求∠A的度數.(2)求圖中陰影部分的面積.18.(8分)計算:|﹣1|+﹣(1﹣)0﹣()﹣1.19.(8分)甲、乙兩組工人同時開始加工某種零件,乙組在工作中有一次停產更換設備,更換設備后,乙組的工作效率是原來的2倍.兩組各自加工零件的數量y(件)與時間x(時)之間的函數圖象如下圖所示.(1)求甲組加工零件的數量y與時間x之間的函數關系式.(2)求乙組加工零件總量a的值.20.(8分)如圖1,點P是平面直角坐標系中第二象限內的一點,過點P作PA⊥y軸于點A,點P繞點A順時針旋轉60°得到點P',我們稱點P'是點P的“旋轉對應點”.(1)若點P(﹣4,2),則點P的“旋轉對應點”P'的坐標為;若點P的“旋轉對應點”P'的坐標為(﹣5,16)則點P的坐標為;若點P(a,b),則點P的“旋轉對應點”P'的坐標為;(2)如圖2,點Q是線段AP'上的一點(不與A、P'重合),點Q的“旋轉對應點”是點Q',連接PP'、QQ',求證:PP'∥QQ';(3)點P與它的“旋轉對應點”P'的連線所在的直線經過點(,6),求直線PP'與x軸的交點坐標.21.(8分)如圖,己知AB是⊙C的直徑,C為圓上一點,D是BC的中點,CH⊥AB于H,垂足為H,連OD交弦BC于E,交CH于F,聯(lián)結EH.(1)求證:△BHE∽△BCO.(2)若OC=4,BH=1,求22.(10分)如圖,AB=16,O為AB中點,點C在線段OB上(不與點O,B重合),將OC繞點O逆時針旋轉270°后得到扇形COD,AP,BQ分別切優(yōu)弧CD于點P,Q,且點P,Q在AB異側,連接OP.求證:AP=BQ;當BQ=時,求的長(結果保留);若△APO的外心在扇形COD的內部,求OC的取值范圍.23.(12分)矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.(1)如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.①求證:△OCP∽△PDA;②若△OCP與△PDA的面積比為1:4,求邊AB的長.(2)如圖2,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P、A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.24.如圖,四邊形ABCD中,AC平分∠DAB,AC2=AB?AD,∠ADC=90°,E為AB的中點.(1)求證:△ADC∽△ACB;(2)CE與AD有怎樣的位置關系?試說明理由;(3)若AD=4,AB=6,求的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

連接BC,由網格求出AB,BC,AC的長,利用勾股定理的逆定理得到△ABC為等腰直角三角形,即可求出所求.【詳解】如圖,連接BC,由網格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC為等腰直角三角形,∴∠BAC=45°,則tan∠BAC=1,故選B.【點睛】本題考查了銳角三角函數的定義,解直角三角形,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.2、B【解析】

根據三角形中位線定理求出DE,得到DF∥BM,再證明EC=EF=AC,由此即可解決問題.【詳解】在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,∴AC===10,∵DE是△ABC的中位線,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=2.故選B.3、C【解析】分析:由同弧所對的圓周角相等可知∠B=∠ADC=35°;而由圓周角的推論不難得知∠ACB=90°,則由∠CAB=90°-∠B即可求得.詳解:∵∠ADC=35°,∠ADC與∠B所對的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故選C.點睛:本題考查了同弧所對的圓周角相等以及直徑所對的圓周角是直角等知識.4、D【解析】

分圓P在y軸的左側與y軸相切、圓P在y軸的右側與y軸相切兩種情況,根據切線的判定定理解答.【詳解】當圓P在y軸的左側與y軸相切時,平移的距離為3-2=1,當圓P在y軸的右側與y軸相切時,平移的距離為3+2=5,故選D.【點睛】本題考查的是切線的判定、坐標與圖形的變化-平移問題,掌握切線的判定定理是解題的關鍵,解答時,注意分情況討論思想的應用.5、D【解析】

解:,①+②得:3(x+y)=15,則x+y=5,故選D6、B【解析】

解:根據特殊角的三角函數值可得tan45o=1,故選B.【點睛】本題考查特殊角的三角函數值.7、C【解析】

根據近似數的精確度:近似數5.0×102精確到十位.故選C.考點:近似數和有效數字8、C【解析】試題分析:∵解不等式2x+1>0得:x>-12,解不等式x-5≤0,得:x≤5,∴不等式組的解集是考點:一元一次不等式組的整數解.9、C【解析】

首先根據AD∥BC,求出∠FED的度數,然后根據軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等,則可知∠DEF=∠FED′,最后求得∠AED′的大小.【詳解】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折疊的性質知,∠DEF=∠FED′=65°,∴∠AED′=180°-2∠FED=50°,故選:C.【點睛】此題考查了長方形的性質與折疊的性質.此題比較簡單,解題的關鍵是注意數形結合思想的應用.10、D【解析】

,去分母,方程兩邊同時乘以(x﹣1),得:m+1x=x﹣1,由分母可知,分式方程的增根可能是1.當x=1時,m+4=1﹣1,m=﹣4,故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、-4<x<1【解析】將P(1,1)代入解析式y(tǒng)1=mx,先求出m的值為,將Q點縱坐標y=1代入解析式y(tǒng)=x,求出y1=mx的橫坐標x=-4,即可由圖直接求出不等式kx+b>mx>-1的解集為y1>y1>-1時,x的取值范圍為-4<x<1.

故答案為-4<x<1.

點睛:本題考查了一次函數與一元一次不等式,求出函數圖象的交點坐標及函數與x軸的交點坐標是解題的關鍵.12、22.5【解析】

連接半徑OC,先根據點C為的中點,得∠BOC=45°,再由同圓的半徑相等和等腰三角形的性質得:∠A=∠ACO=×45°,可得結論.【詳解】連接OC,

∵OE⊥AB,

∴∠EOB=90°,

∵點C為的中點,

∴∠BOC=45°,

∵OA=OC,

∴∠A=∠ACO=×45°=22.5°,

故答案為:22.5°.【點睛】本題考查了圓周角定理與等腰三角形的性質.解題的關鍵是注意掌握數形結合思想的應用.13、1【解析】

估計利用頻率估計概率可估計摸到黑球的概率為0.3,然后根據概率公式計算這個口袋中黑球的數量,繼而得出答案.【詳解】因為共摸了200次球,發(fā)現(xiàn)有60次摸到黑球,所以估計摸到黑球的概率為0.3,所以估計這個口袋中黑球的數量為20×0.3=6(個),則紅球大約有20-6=1個,故答案為:1.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數的增多,值越來越精確.14、【解析】

設AC=x,則AB=2x,根據面積公式得S△ABC=2x,由余弦定理求得cosC代入化簡S△ABC=,由三角形三邊關系求得,由二次函數的性質求得S△ABC取得最大值.【詳解】設AC=x,則AB=2x,根據面積公式得:c==2x.由余弦定理可得:,∴S△ABC=2x=2x=由三角形三邊關系有,解得,故當時,取得最大值,

故答案為:.【點睛】本題主要考查了余弦定理和面積公式在解三角形中的應用,考查了二次函數的性質,考查了計算能力,當涉及最值問題時,可考慮用函數的單調性和定義域等問題,屬于中檔題.15、1.【解析】試題分析:由BC的垂直平分線交AB于點D,可得CD=BD=6,又由等邊對等角,可求得∠BCD的度數,繼而求得∠ADC的度數,則可判定△ACD是等腰三角形,繼而求得答案.試題解析:∵BC的垂直平分線交AB于點D,∴CD=BD=6,∴∠DCB=∠B=40°,∴∠ADC=∠B+∠BCD=80°,∴∠ADC=∠A=80°,∴AC=CD=6,∴△ADC的周長為:AD+DC+AC=2+6+6=1.考點:1.線段垂直平分線的性質;2.等腰三角形的判定與性質.16、x>﹣1.【解析】

根據函數y=3x+b和y=ax-3的圖象交于點P(-1,-5),然后根據圖象即可得到不等式

3x+b>ax-3的解集.【詳解】解:∵函數y=3x+b和y=ax-3的圖象交于點P(-1,-5),∴不等式

3x+b>ax-3的解集是x>-1,故答案為:x>-1.【點睛】本題考查一次函數與一元一次不等式、一次函數的圖象,熟練掌握是解題的關鍵.三、解答題(共8題,共72分)17、(1)∠A=30°;(2)【解析】

(1)連接OC,由過點C的切線交AB的延長線于點D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.(2)先求∠COD度數及OC長度,即可求出圖中陰影部分的面積.【詳解】解:(1)連結OC∵CD為⊙O的切線∴OC⊥CD∴∠OCD=90°又∵OA=OC∴∠A=∠ACO又∵∠A=∠D∴∠A=∠ACO=∠D而∠A+∠ACD+∠D=180°﹣90°=90°∴∠A=30°(2)由(1)知:∠D=∠A=30°∴∠COD=60°又∵CD=2∴OC=2∴S陰影=.【點睛】本題考查的知識點是扇形面積的計算及切線的性質,解題的關鍵是熟練的掌握扇形面積的計算及切線的性質.18、1【解析】試題分析:先分別計算絕對值,算術平方根,零指數冪和負指數冪,然后相加即可.試題解析:解:|﹣1|+﹣(1﹣)0﹣()﹣1=1+3﹣1﹣2=1.點睛:本題考查了實數的計算,熟悉計算的順序和相關的法則是解決此題的關鍵.19、(1)y=60x;(2)300【解析】

(1)由題圖可知,甲組的y是x的正比例函數.設甲組加工的零件數量y與時間x的函數關系式為y=kx.根據題意,得6k=360,解得k=60.所以,甲組加工的零件數量y與時間x之間的關系式為y=60x.(2)當x=2時,y=100.因為更換設備后,乙組工作效率是原來的2倍.所以,解得a=300.20、(1)(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)見解析;(3)直線PP'與x軸的交點坐標(﹣,0)【解析】

(1)①當P(-4,2)時,OA=2,PA=4,由旋轉知,∠P'AH=30°,進而P'H=P'A=2,AH=P'H=2,即可得出結論;②當P'(-5,16)時,確定出P'A=10,AH=5,由旋轉知,PA=PA'=10,OA=OH-AH=16-5,即可得出結論;③當P(a,b)時,同①的方法得,即可得出結論;(2)先判斷出∠BQQ'=60°,進而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出結論;(3)先確定出yPP'=x+3,即可得出結論.【詳解】解:(1)如圖1,①當P(﹣4,2)時,∵PA⊥y軸,∴∠PAH=90°,OA=2,PA=4,由旋轉知,P'A=4,∠PAP'=60°,∴∠P'AH=30°,在Rt△P'AH中,P'H=P'A=2,∴AH=P'H=2,∴OH=OA+AH=2+2,∴P'(﹣2,2+2),②當P'(﹣5,16)時,在Rt△P'AH中,∠P'AH=30°,P'H=5,∴P'A=10,AH=5,由旋轉知,PA=PA'=10,OA=OH﹣AH=16﹣5,∴P(﹣10,16﹣5),③當P(a,b)時,同①的方法得,P'(,b﹣a),故答案為:(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)如圖2,過點Q作QB⊥y軸于B,∴∠BQQ'=60°,由題意知,△PAP'是等邊三角形,∴∠PAP'=∠PP'A=60°,∵QB⊥y軸,PA⊥y軸,∴QB∥PA,∴∠P'QQ'=∠PAP'=60°,∴∠P'QQ'=60°=∠PP'A,∴PP'∥QQ';(3)設yPP'=kx+b',由題意知,k=,∵直線經過點(,6),∴b'=3,∴yPP'=x+3,令y=0,∴x=﹣,∴直線PP'與x軸的交點坐標(﹣,0).【點睛】此題是幾何變換綜合題,主要考查了含30度角的直角三角形的性質,旋轉的性質,等邊三角形的判定和性質,待定系數法,解本題的關鍵是理解新定義.21、(1)證明見解析;(2)EH=【解析】

(1)由題意推出∠EHB=∠OCB,(2)結合△BHE~△BCO,推出BHBC【詳解】(1)證明:∵OD為圓的半徑,D是的中點,∴OD⊥BC,BE=CE=1∵CH⊥AB,∴∠CHB=90∴HE=1∴∠B=∠EHB,∵OB=OC,∴∠B=∠OCB,∴∠EHB=∠OCB,又∵∠B=∠B,∴ΔBHE∽ΔBCO.(2)∵ΔBHE∽ΔBCO,∴BHBC∵OC=4,BH=1,∴OB=4得12解得BE=2∴EH=BE=2【點睛】本題考查的知識點是圓與相似三角形,解題的關鍵是熟練的掌握圓與相似三角形.22、(1)詳見解析;(2);(3)4<OC<1.【解析】

(1)連接OQ,由切線性質得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性質即可得證.(2)由(1)中全等三角形性質得∠AOP=∠BOQ,從而可得P、O、Q三點共線,在Rt△BOQ中,根據余弦定義可得cosB=,由特殊角的三角函數值可得∠B=30°,∠BOQ=60°,根據直角三角形的性質得OQ=4,結合題意可得∠QOD度數,由弧長公式即可求得答案.(3)由直角三角形性質可得△APO的外心是OA的中點,結合題意可得OC取值范圍.【詳解】(1)證明:連接OQ.∵AP、BQ是⊙O的切線,∴OP⊥AP,OQ⊥BQ,∴∠APO=∠BQO=90°,在Rt△APO和Rt△BQO中,,∴Rt△APO≌Rt△BQO,∴AP=BQ.(2)∵Rt△APO≌Rt△BQO,∴∠AOP=∠BOQ,∴P、O、Q三點共線,∵在Rt△BOQ中,cosB=,∴∠B=30°,∠BOQ=60°,∴OQ=OB=4,∵∠COD=90°,∴∠QOD=90°+60°=150°,∴優(yōu)弧QD的長=,(3)解:設點M為Rt△APO的外心,則M為OA的中點,

∵OA=1,

∴OM=4,

∴當△APO的外心在扇形COD的內部時,OM<OC,

∴OC的取值范圍為4<OC<1.【點睛】本題考查了三角形的外接圓與外心、弧長的計算、扇形面積的計算、旋轉的性質以及全等三角形的判定與性質,解題的關鍵是:(1)利用全等三角形的判定定理HL證出Rt△APO≌Rt△BQO;(2)通過解直角三角形求出圓的半徑;(3)牢記直角三角形外心為斜邊的中點是解題的關鍵.23、(1)①證明見解析;②10;(2)線段EF的長度不變,它的長度為25..【解析】試題分析:(1)先證出∠C=∠D=90°,再根據∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據△OCP與△PDA的面積比為1:4,得出CP=12(2)作MQ∥AN,交PB于點Q

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論