甘肅省蘭州市綠蔭學校2024屆中考數(shù)學考前最后一卷含解析_第1頁
甘肅省蘭州市綠蔭學校2024屆中考數(shù)學考前最后一卷含解析_第2頁
甘肅省蘭州市綠蔭學校2024屆中考數(shù)學考前最后一卷含解析_第3頁
甘肅省蘭州市綠蔭學校2024屆中考數(shù)學考前最后一卷含解析_第4頁
甘肅省蘭州市綠蔭學校2024屆中考數(shù)學考前最后一卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

甘肅省蘭州市綠蔭學校2024屆中考數(shù)學考前最后一卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AB∥CD,直線EF與AB、CD分別相交于E、F,AM⊥EF于點M,若∠EAM=10°,那么∠CFE等于()A.80° B.85° C.100° D.170°2.點A(4,3)經過某種圖形變化后得到點B(-3,4),這種圖形變化可以是()A.關于x軸對稱 B.關于y軸對稱C.繞原點逆時針旋轉 D.繞原點順時針旋轉3.下面四個幾何體:其中,俯視圖是四邊形的幾何體個數(shù)是()A.1 B.2 C.3 D.44.罰球是籃球比賽中得分的一個組成部分,罰球命中率的高低對籃球比賽的結果影響很大.如圖是對某球員罰球訓練時命中情況的統(tǒng)計:下面三個推斷:①當罰球次數(shù)是500時,該球員命中次數(shù)是411,所以“罰球命中”的概率是0.822;②隨著罰球次數(shù)的增加,“罰球命中”的頻率總在0.812附近擺動,顯示出一定的穩(wěn)定性,可以估計該球員“罰球命中”的概率是0.812;③由于該球員“罰球命中”的頻率的平均值是0.1,所以“罰球命中”的概率是0.1.其中合理的是()A.① B.② C.①③ D.②③5.4的平方根是()A.2 B.±2 C.8 D.±86.如圖,將△ABC繞點C順時針旋轉90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是A.55° B.60° C.65° D.70°7.已知反比例函數(shù)y=﹣,當1<x<3時,y的取值范圍是()A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣28.直線AB、CD相交于點O,射線OM平分∠AOD,點P在射線OM上(點P與點O不重合),如果以點P為圓心的圓與直線AB相離,那么圓P與直線CD的位置關系是()A.相離 B.相切 C.相交 D.不確定9.已知等腰三角形的周長是10,底邊長y是腰長x的函數(shù),則下列圖象中,能正確反映y與x之間函數(shù)關系的圖象是()A. B. C.D10.如果一組數(shù)據(jù)6,7,x,9,5的平均數(shù)是2x,那么這組數(shù)據(jù)的中位數(shù)為()A.5 B.6 C.7 D.9二、填空題(本大題共6個小題,每小題3分,共18分)11.在由乙猜甲剛才想的數(shù)字游戲中,把乙猜的數(shù)字記為b且,a,b是0,1,2,3四個數(shù)中的其中某一個,若|a﹣b|≤1則稱甲乙”心有靈犀”.現(xiàn)任意找兩個人玩這個游戲,得出他們”心有靈犀”的概率為_____.12.讓我們輕松一下,做一個數(shù)字游戲:第一步:取一個自然數(shù),計算得;第二步:算出的各位數(shù)字之和得,計算得;第三步:算出的各位數(shù)字之和得,再計算得;依此類推,則____________13.化簡的結果為_____.14.已知式子有意義,則x的取值范圍是_____15.某航班每次飛行約有111名乘客,若飛機失事的概率為p=1.11115,一家保險公司要為乘客保險,許諾飛機一旦失事,向每位乘客賠償41萬元人民幣.平均來說,保險公司應向每位乘客至少收取_____元保險費才能保證不虧本.16.矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點P,且DP=1.將矩形紙片折疊,使點B與點P重合,折痕所在直線交矩形兩邊于點E,F(xiàn),則EF長為________.三、解答題(共8題,共72分)17.(8分)(11分)閱讀資料:如圖1,在平面之間坐標系xOy中,A,B兩點的坐標分別為A(x1,y1),B(x1,y1),由勾股定理得AB1=|x1﹣x1|1+|y1﹣y1|1,所以A,B兩點間的距離為AB=.我們知道,圓可以看成到圓心距離等于半徑的點的集合,如圖1,在平面直角坐標系xoy中,A(x,y)為圓上任意一點,則A到原點的距離的平方為OA1=|x﹣0|1+|y﹣0|1,當⊙O的半徑為r時,⊙O的方程可寫為:x1+y1=r1.問題拓展:如果圓心坐標為P(a,b),半徑為r,那么⊙P的方程可以寫為.綜合應用:如圖3,⊙P與x軸相切于原點O,P點坐標為(0,6),A是⊙P上一點,連接OA,使tan∠POA=,作PD⊥OA,垂足為D,延長PD交x軸于點B,連接AB.①證明AB是⊙P的切點;②是否存在到四點O,P,A,B距離都相等的點Q?若存在,求Q點坐標,并寫出以Q為圓心,以OQ為半徑的⊙O的方程;若不存在,說明理由.18.(8分)某商場經營某種品牌的玩具,購進時的單價是30元,根據(jù)市場調查:在一段時間內,銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.不妨設該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結果填寫在表格中:銷售單價(元)x銷售量y(件)銷售玩具獲得利潤w(元)(2)在(1)問條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應定為多少元.在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?19.(8分)如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O經過AC的中點D,E為⊙O上的一點,連接DE,BE,DE與AB交于點F.求證:BC為⊙O的切線;若F為OA的中點,⊙O的半徑為2,求BE的長.20.(8分)如圖所示,已知,試判斷與的大小關系,并說明理由.21.(8分)端午節(jié)“賽龍舟,吃粽子”是中華民族的傳統(tǒng)習俗.節(jié)日期間,小邱家包了三種不同餡的粽子,分別是:紅棗粽子(記為A),豆沙粽子(記為B),肉粽子(記為C),這些粽子除了餡不同,其余均相同.粽子煮好后,小邱的媽媽給一個白盤中放入了兩個紅棗粽子,一個豆沙粽子和一個肉粽子;給一個花盤中放入了兩個肉粽子,一個紅棗粽子和一個豆沙粽子.根據(jù)以上情況,請你回答下列問題:假設小邱從白盤中隨機取一個粽子,恰好取到紅棗粽子的概率是多少?若小邱先從白盤里的四個粽子中隨機取一個粽子,再從花盤里的四個粽子中隨機取一個粽子,請用列表法或畫樹狀圖的方法,求小邱取到的兩個粽子中一個是紅棗粽子、一個是豆沙粽子的概率.22.(10分)如圖所示,在中,,(1)用尺規(guī)在邊BC上求作一點P,使;(不寫作法,保留作圖痕跡)(2)連接AP當為多少度時,AP平分.23.(12分)先化簡,再求值:,其中x是滿足不等式﹣(x﹣1)≥的非負整數(shù)解.24.計算下列各題:(1)tan45°?sin60°?cos30°;(2)sin230°+sin45°?tan30°.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)題意,求出∠AEM,再根據(jù)AB∥CD,得出∠AEM與∠CFE互補,求出∠CFE.【詳解】∵AM⊥EF,∠EAM=10°∴∠AEM=80°又∵AB∥CD∴∠AEM+∠CFE=180°∴∠CFE=100°.故選C.【點睛】本題考查三角形內角和與兩條直線平行內錯角相等.2、C【解析】分析:根據(jù)旋轉的定義得到即可.詳解:因為點A(4,3)經過某種圖形變化后得到點B(-3,4),所以點A繞原點逆時針旋轉90°得到點B,故選C.點睛:本題考查了旋轉的性質:旋轉前后兩個圖形全等,對應點到旋轉中心的距離相等,對應點與旋轉中心的連線段的夾角等于旋轉角.3、B【解析】試題分析:根據(jù)俯視圖是分別從物體上面看,所得到的俯視圖是四邊形的幾何體有正方體和三棱柱,故選B.考點:簡單幾何體的三視圖4、B【解析】

根據(jù)圖形和各個小題的說法可以判斷是否正確,從而解答本題【詳解】當罰球次數(shù)是500時,該球員命中次數(shù)是411,所以此時“罰球命中”的頻率是:411÷500=0.822,但“罰球命中”的概率不一定是0.822,故①錯誤;隨著罰球次數(shù)的增加,“罰球命中”的頻率總在0.2附近擺動,顯示出一定的穩(wěn)定性,可以估計該球員“罰球命中”的概率是0.2.故②正確;雖然該球員“罰球命中”的頻率的平均值是0.1,但是“罰球命中”的概率不是0.1,故③錯誤.故選:B.【點睛】此題考查了頻數(shù)和頻率的意義,解題的關鍵在于利用頻率估計概率.5、B【解析】

依據(jù)平方根的定義求解即可.【詳解】∵(±1)1=4,∴4的平方根是±1.故選B.【點睛】本題主要考查的是平方根的定義,掌握平方根的定義是解題的關鍵.6、C【解析】

根據(jù)旋轉的性質和三角形內角和解答即可.【詳解】∵將△ABC繞點C順時針旋轉90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵點A,D,E在同一條直線上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故選C.【點睛】此題考查旋轉的性質,關鍵是根據(jù)旋轉的性質和三角形內角和解答.7、D【解析】

根據(jù)反比例函數(shù)的性質可以求得y的取值范圍,從而可以解答本題.【詳解】解:∵反比例函數(shù)y=﹣,∴在每個象限內,y隨x的增大而增大,∴當1<x<3時,y的取值范圍是﹣6<y<﹣1.故選D.【點睛】本題考查了反比例函數(shù)的性質,解答本題的關鍵是明確題意,求出相應的y的取值范圍,利用反比例函數(shù)的性質解答.8、A【解析】

根據(jù)角平分線的性質和點與直線的位置關系解答即可.【詳解】解:如圖所示;∵OM平分∠AOD,以點P為圓心的圓與直線AB相離,∴以點P為圓心的圓與直線CD相離,故選:A.【點睛】此題考查直線與圓的位置關系,關鍵是根據(jù)角平分線的性質解答.9、D【解析】

先根據(jù)三角形的周長公式求出函數(shù)關系式,再根據(jù)三角形的任意兩邊之和大于第三邊,三角形的任意兩邊之差小于第三邊求出x的取值范圍,然后選擇即可.【詳解】由題意得,2x+y=10,所以,y=-2x+10,由三角形的三邊關系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式組的解集是2.5<x<5,正確反映y與x之間函數(shù)關系的圖象是D選項圖象.故選:D.10、B【解析】

直接利用平均數(shù)的求法進而得出x的值,再利用中位數(shù)的定義求出答案.【詳解】∵一組數(shù)據(jù)1,7,x,9,5的平均數(shù)是2x,∴,解得:,則從大到小排列為:3,5,1,7,9,故這組數(shù)據(jù)的中位數(shù)為:1.故選B.【點睛】此題主要考查了中位數(shù)以及平均數(shù),正確得出x的值是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

利用P(A)=,進行計算概率.【詳解】從0,1,2,3四個數(shù)中任取兩個則|a﹣b|≤1的情況有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10種情況,甲乙出現(xiàn)的結果共有4×4=16,故出他們”心有靈犀”的概率為.故答案是:.【點睛】本題考查了概率的簡單計算能力,是一道列舉法求概率的問題,屬于基礎題,可以直接應用求概率的公式.12、1【解析】

根據(jù)題意可以分別求得a1,a2,a3,a4,從而可以發(fā)現(xiàn)這組數(shù)據(jù)的特點,三個一循環(huán),從而可以求得a2019的值.【詳解】解:由題意可得,a1=52+1=26,a2=(2+6)2+1=65,a3=(6+5)2+1=1,a4=(1+2+2)2+1=26,…∴2019÷3=673,∴a2019=a3=1,故答案為:1.【點睛】本題考查數(shù)字變化類規(guī)律探索,解題的關鍵是明確題意,求出前幾個數(shù),觀察數(shù)的變化特點,求出a2019的值.13、+1【解析】

利用積的乘方得到原式=[(﹣1)(+1)]2017?(+1),然后利用平方差公式計算.【詳解】原式=[(﹣1)(+1)]2017?(+1)=(2﹣1)2017?(+1)=+1.故答案為:+1.【點睛】本題考查了二次根式的混合運算,在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當?shù)慕忸}途徑,往往能事半功倍.14、x≤1且x≠﹣1.【解析】根據(jù)二次根式有意義,分式有意義得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案為x≤1且x≠﹣1.15、21【解析】每次約有111名乘客,如飛機一旦失事,每位乘客賠償41萬人民幣,共計4111萬元,由題意可得一次飛行中飛機失事的概率為P=1.11115,所以賠償?shù)腻X數(shù)為41111111×1.11115=2111元,即可得至少應該收取保險費每人=21元.16、6或2.【解析】試題分析:根據(jù)P點的不同位置,此題分兩種情況計算:①點P在CD上;②點P在AD上.①點P在CD上時,如圖:∵PD=1,CD=AB=9,∴CP=6,∵EF垂直平分PB,∴四邊形PFBE是鄰邊相等的矩形即正方形,EF過點C,∵BF=BC=6,∴由勾股定理求得EF=;②點P在AD上時,如圖:先建立相似三角形,過E作EQ⊥AB于Q,∵PD=1,AD=6,∴AP=1,AB=9,由勾股定理求得PB==1,∵EF垂直平分PB,∴∠1=∠2(同角的余角相等),又∵∠A=∠EQF=90°,∴△ABP∽△EFQ(兩角對應相等,兩三角形相似),∴對應線段成比例:,代入相應數(shù)值:,∴EF=2.綜上所述:EF長為6或2.考點:翻折變換(折疊問題).三、解答題(共8題,共72分)17、問題拓展:(x﹣a)1+(y﹣b)1=r1綜合應用:①見解析②點Q的坐標為(4,3),方程為(x﹣4)1+(y﹣3)1=15.【解析】試題分析:問題拓展:設A(x,y)為⊙P上任意一點,則有AP=r,根據(jù)閱讀材料中的兩點之間距離公式即可求出⊙P的方程;綜合應用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,從而可證到△POB≌△PAB,則有∠POB=∠PAB.由⊙P與x軸相切于原點O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切線;②當點Q在線段BP中點時,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得QO=QP=BQ=AQ.易證∠OBP=∠POA,則有tan∠OBP==.由P點坐標可求出OP、OB.過點Q作QH⊥OB于H,易證△BHQ∽△BOP,根據(jù)相似三角形的性質可求出QH、BH,進而求出OH,就可得到點Q的坐標,然后運用問題拓展中的結論就可解決問題.試題解析:解:問題拓展:設A(x,y)為⊙P上任意一點,∵P(a,b),半徑為r,∴AP1=(x﹣a)1+(y﹣b)1=r1.故答案為(x﹣a)1+(y﹣b)1=r1;綜合應用:①∵PO=PA,PD⊥OA,∴∠OPD=∠APD.在△POB和△PAB中,,∴△POB≌△PAB,∴∠POB=∠PAB.∵⊙P與x軸相切于原點O,∴∠POB=90°,∴∠PAB=90°,∴AB是⊙P的切線;②存在到四點O,P,A,B距離都相等的點Q.當點Q在線段BP中點時,∵∠POB=∠PAB=90°,∴QO=QP=BQ=AQ.此時點Q到四點O,P,A,B距離都相等.∵∠POB=90°,OA⊥PB,∴∠OBP=90°﹣∠DOB=∠POA,∴tan∠OBP==tan∠POA=.∵P點坐標為(0,6),∴OP=6,OB=OP=3.過點Q作QH⊥OB于H,如圖3,則有∠QHB=∠POB=90°,∴QH∥PO,∴△BHQ∽△BOP,∴===,∴QH=OP=3,BH=OB=4,∴OH=3﹣4=4,∴點Q的坐標為(4,3),∴OQ==5,∴以Q為圓心,以OQ為半徑的⊙O的方程為(x﹣4)1+(y﹣3)1=15.考點:圓的綜合題;全等三角形的判定與性質;等腰三角形的性質;直角三角形斜邊上的中線;勾股定理;切線的判定與性質;相似三角形的判定與性質;銳角三角函數(shù)的定義.18、(1)1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.【解析】

(1)由銷售單價每漲1元,就會少售出10件玩具得銷售量y=600﹣(x﹣40)x=1000﹣x,銷售利潤w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.(2)令﹣10x2+1300x﹣1=10000,求出x的值即可;(3)首先求出x的取值范圍,然后把w=﹣10x2+1300x﹣1轉化成y=﹣10(x﹣65)2+12250,結合x的取值范圍,求出最大利潤.【詳解】解:(1)銷售量y=600﹣(x﹣40)x=1000﹣x,銷售利潤w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.故答案為:1000﹣x,﹣10x2+1300x﹣1.(2)﹣10x2+1300x﹣1=10000解之得:x1=50,x2=80答:玩具銷售單價為50元或80元時,可獲得10000元銷售利潤.(3)根據(jù)題意得,解得:44≤x≤46.w=﹣10x2+1300x﹣1=﹣10(x﹣65)2+12250∵a=﹣10<0,對稱軸x=65,∴當44≤x≤46時,y隨x增大而增大.∴當x=46時,W最大值=8640(元).答:商場銷售該品牌玩具獲得的最大利潤為8640元.19、(1)證明見解析;(2)【解析】

(1)連接BD,由圓周角性質定理和等腰三角形的性質以及已知條件證明∠ABC=90°即可;(2)連接OD,根據(jù)已知條件求得AD、DF的長,再證明△AFD∽△EFB,然后根據(jù)相似三角形的對應邊成比例即可求得.【詳解】(1)連接BD,∵AB為⊙O的直徑,∴BD⊥AC,∵D是AC的中點,∴BC=AB,∴∠C=∠A=45°,∴∠ABC=90°,∴BC是⊙O的切線;(2)連接OD,由(1)可得∠AOD=90°,∵⊙O的半徑為2,F(xiàn)為OA的中點,∴OF=1,BF=3,,∴,∵,∴∠E=∠A,∵∠AFD=∠EFB,∴△AFD∽△EFB,∴,即,∴.【點睛】本題考查了切線的判定與性質、相似三角形的判定與性質以及勾股定理的運用;證明某一線段是圓的切線時,一般情況下是連接切點與圓心,通過證明該半徑垂直于這一線段來判定切線.20、.【解析】

首先判斷∠AED與∠ACB是一對同位角,然后根據(jù)已知條件推出DE∥BC,得出兩角相等.【詳解】解:∠AED=∠ACB.理由:如圖,分別標記∠1,∠2,∠3,∠1.∵∠1+∠1=180°(平角定義),∠1+∠2=180°(已知).

∴∠2=∠1.

∴EF∥AB(內錯角相等,兩直線平行).

∴∠3=∠ADE(兩直線平行,內錯角相等).

∵∠3=∠B(已知),

∴∠B=∠ADE(等量代換).

∴DE∥BC(同位角相等,兩直線平行).

∴∠AED=∠ACB(兩直線平行,同位角相等).【點睛】本題重點考查平行線的性質和判定,難度適

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論