版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年北京平谷縣韓莊中學高一數(shù)學文期末試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.若tanθ=3,則cos2θ=()A. B. C.﹣ D.﹣參考答案:C【考點】二倍角的余弦;同角三角函數(shù)基本關(guān)系的運用.【分析】由條件利用角三角函數(shù)的基本關(guān)系,二倍角的余弦公式,求得cos2θ的值.【解答】解:∵tanθ=3,則cos2θ====﹣,故選:C.2.中,若,則的面積為
A.
B.
C.1
D.參考答案:A略3.設(shè)是平面直角坐標系內(nèi)軸,軸正方向上的單位向量且,則的面積等于(
).(A)
15
(B)
10
(C)
7.5
(D)
5參考答案:D4.如圖,將一正方體沿著相鄰三個面的對角線截出一個棱錐,則棱錐的體積與剩下的幾何體的體積之比為(
)A.1∶6
B.1∶5
C.1∶2
D.1∶3參考答案:B
略5.已知集合,那么
(
)A.0∈A
B.2A
C.-1∈A
D.0A
參考答案:A6.函數(shù)f(x)=loga(x﹣1)(a>0,a≠1)的反函數(shù)的圖象過定點()A.(0,2) B.(2,0) C.(0,3) D.(3,0)參考答案:A【考點】反函數(shù).【分析】先求函數(shù)過的定點,再求關(guān)于y=x的對稱點,對稱點就是反函數(shù)過的定點.【解答】解:函數(shù)f(x)=loga(x﹣1)恒過(2,0),函數(shù)和它的反函數(shù)關(guān)于y=x對稱,那么(2,0)關(guān)于y=x的對稱點是(0,2),即(0,2)為反函數(shù)圖象上的定點.故選A.7.設(shè)f(x)為定義在R上的奇函數(shù),當x≥0時,f(x)=+2x+b(b為常數(shù)),則f(-1)=(
)A、3
B、1
C、—1
D、—3參考答案:D8.設(shè)已知函數(shù),則f[f()]的值為(
).A.
B
C.
D.
,參考答案:D略9.設(shè)函數(shù)上滿足以為對稱軸,且在上只有,試求方程在根的個數(shù)為(
)A.
803個
B.
804個
C.
805個
D.
806個
參考答案:C略10.已知α、β是兩個不同平面,m,n,l是三條不同直線,則下列命題正確的是()A.若m∥α,n⊥β且m⊥n,則α⊥β B.若m?α,n?α,l⊥n,則l⊥αC.若m∥α,n⊥β且α⊥β,則m∥n D.若l⊥α且l⊥β,則α∥β參考答案:D【考點】空間中直線與平面之間的位置關(guān)系.【分析】在A中,α與β相交或平行;在B中,l與α相交、平行或l?α;在C中,m與n相交、平行或異面;在D中,由面面平行的性質(zhì)定理得α∥β.【解答】解:由α、β是兩個不同平面,m,n,l是三條不同直線,知:在A中,若m∥α,n⊥β且m⊥n,則α與β相交或平行,故A錯誤;在B中,若m?α,n?α,l⊥n,則l與α相交、平行或l?α,故B錯誤;在C中,若m∥α,n⊥β且α⊥β,則m與n相交、平行或異面,故選C;在D中,若l⊥α且l⊥β,則由面面平行的性質(zhì)定理得α∥β,故D正確.故選:D.二、填空題:本大題共7小題,每小題4分,共28分11.在邊長為2的正三角形內(nèi)隨機地取一點,則該點到三角形各頂點的距離均不小于1的概率是
.參考答案:略12.設(shè)Sn為等差數(shù)列{an}的前n項和,已知S5=5,S9=27,則S7=
.參考答案:14【考點】等差數(shù)列的前n項和.【分析】利用等差數(shù)列的前n項和公式即可得出.【解答】解:∵數(shù)列{an}是等差數(shù)列,S5=5,S9=27,∴,解得.∴S7==﹣7+21=14.故答案為:14.13.函數(shù)的值域為
.參考答案:略14.已知sinα=,并且α是第二象限角,則tan的值為.參考答案:【考點】三角函數(shù)的化簡求值.【分析】由條件利用同角三角的基本關(guān)系求得tanα的值,再利用二倍角的正切公式求得tan的值.【解答】解:∵sinα=,并且α是第二象限角,∴cosx=﹣=﹣,∴tanα==﹣.由2kπ+<α<2kπ+π,求得kπ+<<kπ+,故是第一或第三象限角,∴tan>1.再根據(jù)tanα=﹣=,求得tan=或tan=﹣(舍去),故答案為:.15.若x,y為非零實數(shù),代數(shù)式的值恒為正,對嗎?參考答案:對
.16.采用簡單隨機抽樣從含個個體的總體中抽取一個容量為的樣本,個體 前兩次未被抽到,第三次被抽到的機會為______________整個過程中個體被抽中的機會是_________參考答案:(不論先后,被抽取的概率都是),0.417.如圖3.在△ABC中,AB=3,AC=5,若O為△ABC內(nèi)一點,且滿足,則的值是
.參考答案:8略三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.已知函數(shù)f(x)是R上的奇函數(shù),且x>0時,f(x)=﹣x2+2x.(1)求f(x)的解析式;(2)在如圖的直角坐標系中畫出函數(shù)求f(x)的圖象,并求不等式f(x)<0的解集.參考答案:【考點】函數(shù)的圖象;函數(shù)解析式的求解及常用方法.【專題】應(yīng)用題;函數(shù)思想;數(shù)形結(jié)合法;函數(shù)的性質(zhì)及應(yīng)用.【分析】(1)根據(jù)函數(shù)奇偶性的性質(zhì),利用對稱性進行求解即可.(2)畫圖,并由圖象得到結(jié)論.【解答】解:(1)設(shè)x<0,則﹣x>0,∴f(﹣x)=﹣(﹣x)2﹣2x=﹣x2﹣2x,∵f(x)是R上的奇函數(shù),∴f(﹣x)=﹣f(x),f(0)=0,∴f(x)=x2+2x,∴f(x)=,(2)其圖象如圖所示,由圖象可知,f(x)<0的解集為(﹣2,0)∪(2,+∞).【點評】本題考查函數(shù)解析式的求解,利用了奇函數(shù)的性質(zhì)f(x)=﹣f(﹣x),以及函數(shù)圖象的畫法和不等式的解法,屬于基礎(chǔ)題.19.已知與的夾角為,求的值參考答案:解析:20.在三角形中,角及其對邊滿足:.(1)求角的大??;(2)求函數(shù)的值域.參考答案:(1)由條件得:,所以,,又,所以,,因為,所以,所以,又,所以.(2)在三角形中,,故.因為,所以.所以,.所以,函數(shù)的值域為.21.(本小題滿分12分)在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年南寧職業(yè)技術(shù)學院單招綜合素質(zhì)考試備考題庫含詳細答案解析
- 2026年河南建筑職業(yè)技術(shù)學院高職單招職業(yè)適應(yīng)性測試備考題庫及答案詳細解析
- 2026年浙江交通職業(yè)技術(shù)學院單招綜合素質(zhì)考試模擬試題含詳細答案解析
- 2026年威海海洋職業(yè)學院單招職業(yè)技能考試模擬試題含詳細答案解析
- 2026年湖南大眾傳媒職業(yè)技術(shù)學院單招綜合素質(zhì)考試備考試題含詳細答案解析
- 2026年石家莊科技職業(yè)學院單招綜合素質(zhì)考試備考題庫含詳細答案解析
- 2026雄安宣武醫(yī)院公開選聘工作人員262名備考考試試題及答案解析
- 2026年山西經(jīng)貿(mào)職業(yè)學院單招職業(yè)技能考試模擬試題含詳細答案解析
- 2026上半年貴州事業(yè)單位聯(lián)考經(jīng)貿(mào)職業(yè)技術(shù)學院招聘15人參考考試試題及答案解析
- 2026四川宜賓市中醫(yī)醫(yī)院第一次自主招聘工作人員3人考試重點題庫及答案解析
- 幕墻工程售后質(zhì)量保障服務(wù)方案
- 鋁合金鑄造項目可行性研究報告
- 2024年西藏自治區(qū)事業(yè)單位《職業(yè)能力傾向測驗(D類)》考試真題及答案
- 2025汽車行業(yè)Data+AI數(shù)智化轉(zhuǎn)型白皮書
- 市政工程項目管理及表格模板全集
- 2025年甘肅省蘭州市綜合評標專家?guī)炜荚囶}庫(三)
- 家居行業(yè)投資合作合同(2025修訂版)
- 2025年高三語文10月考聯(lián)考作文匯編(解析+立意+范文)
- 2025年人工智慧行業(yè)人工智能技術(shù)與智能操作系統(tǒng)研究報告
- 供應(yīng)商管理績效綜合評價表
- 破產(chǎn)業(yè)務(wù)培訓課件
評論
0/150
提交評論