版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
浙江省十一校聯(lián)合體2024屆高三第二次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線,為坐標(biāo)原點(diǎn),、為其左、右焦點(diǎn),點(diǎn)在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.2.已知數(shù)列滿足,則()A. B. C. D.3.已知等比數(shù)列的前項(xiàng)和為,且滿足,則的值是()A. B. C. D.4.歐拉公式為,(虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉發(fā)現(xiàn)的,它將指數(shù)函數(shù)的定義域擴(kuò)大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里非常重要,被譽(yù)為“數(shù)學(xué)中的天橋”.根據(jù)歐拉公式可知,表示的復(fù)數(shù)位于復(fù)平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.若實(shí)數(shù)x,y滿足條件,目標(biāo)函數(shù),則z的最大值為()A. B.1 C.2 D.06.曲線在點(diǎn)處的切線方程為,則()A. B. C.4 D.87.如圖所示,在平面直角坐標(biāo)系中,是橢圓的右焦點(diǎn),直線與橢圓交于,兩點(diǎn),且,則該橢圓的離心率是()A. B. C. D.8.定義在上的奇函數(shù)滿足,若,,則()A. B.0 C.1 D.29.的展開式中,滿足的的系數(shù)之和為()A. B. C. D.10.函數(shù)的對(duì)稱軸不可能為()A. B. C. D.11.一個(gè)四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側(cè)視圖),則這個(gè)四棱錐中最最長棱的長度是().A. B. C. D.12.在中,是的中點(diǎn),,點(diǎn)在上且滿足,則等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù),滿足約束條件則的最大值為________.14.已知實(shí)數(shù),滿足,則目標(biāo)函數(shù)的最小值為__________.15.?dāng)?shù)列的前項(xiàng)和為,則數(shù)列的前項(xiàng)和_____.16.在中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且,,,則_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐E﹣ABCD的側(cè)棱DE與四棱錐F﹣ABCD的側(cè)棱BF都與底面ABCD垂直,,//,.(1)證明://平面BCE.(2)設(shè)平面ABF與平面CDF所成的二面角為θ,求.18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實(shí)數(shù),使得,證明:.19.(12分)如圖,在四棱錐中,底面為直角梯形,,,,,,點(diǎn)、分別為,的中點(diǎn),且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.20.(12分)隨著小汽車的普及,“駕駛證”已經(jīng)成為現(xiàn)代人“必考”的證件之一.若某人報(bào)名參加了駕駛證考試,要順利地拿到駕駛證,他需要通過四個(gè)科目的考試,其中科目二為場地考試.在一次報(bào)名中,每個(gè)學(xué)員有5次參加科目二考試的機(jī)會(huì)(這5次考試機(jī)會(huì)中任何一次通過考試,就算順利通過,即進(jìn)入下一科目考試;若5次都沒有通過,則需重新報(bào)名),其中前2次參加科目二考試免費(fèi),若前2次都沒有通過,則以后每次參加科目二考試都需要交200元的補(bǔ)考費(fèi).某駕校對(duì)以往2000個(gè)學(xué)員第1次參加科目二考試進(jìn)行了統(tǒng)計(jì),得到下表:考試情況男學(xué)員女學(xué)員第1次考科目二人數(shù)1200800第1次通過科目二人數(shù)960600第1次未通過科目二人數(shù)240200若以上表得到的男、女學(xué)員第1次通過科目二考試的頻率分別作為此駕校男、女學(xué)員每次通過科目二考試的概率,且每人每次是否通過科目二考試相互獨(dú)立.現(xiàn)有一對(duì)夫妻同時(shí)在此駕校報(bào)名參加了駕駛證考試,在本次報(bào)名中,若這對(duì)夫妻參加科目二考試的原則為:通過科目二考試或者用完所有機(jī)會(huì)為止.(1)求這對(duì)夫妻在本次報(bào)名中參加科目二考試都不需要交補(bǔ)考費(fèi)的概率;(2)若這對(duì)夫妻前2次參加科目二考試均沒有通過,記這對(duì)夫妻在本次報(bào)名中參加科目二考試產(chǎn)生的補(bǔ)考費(fèi)用之和為元,求的分布列與數(shù)學(xué)期望.21.(12分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大??;(2)在棱上確定一點(diǎn),使二面角的平面角的余弦值為.22.(10分)如圖,空間幾何體中,是邊長為2的等邊三角形,,,,平面平面,且平面平面,為中點(diǎn).(1)證明:平面;(2)求二面角平面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù),先確定出的長度,然后利用雙曲線定義將轉(zhuǎn)化為的關(guān)系式,化簡后可得到的值,即可求漸近線方程.【詳解】如圖所示:因?yàn)?,所以,又因?yàn)?,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【點(diǎn)睛】本題考查根據(jù)雙曲線中的長度關(guān)系求解漸近線方程,難度一般.注意雙曲線的焦點(diǎn)到漸近線的距離等于虛軸長度的一半.2、C【解析】
利用的前項(xiàng)和求出數(shù)列的通項(xiàng)公式,可計(jì)算出,然后利用裂項(xiàng)法可求出的值.【詳解】.當(dāng)時(shí),;當(dāng)時(shí),由,可得,兩式相減,可得,故,因?yàn)橐策m合上式,所以.依題意,,故.故選:C.【點(diǎn)睛】本題考查利用求,同時(shí)也考查了裂項(xiàng)求和法,考查計(jì)算能力,屬于中等題.3、C【解析】
利用先求出,然后計(jì)算出結(jié)果.【詳解】根據(jù)題意,當(dāng)時(shí),,,故當(dāng)時(shí),,數(shù)列是等比數(shù)列,則,故,解得,故選.【點(diǎn)睛】本題主要考查了等比數(shù)列前項(xiàng)和的表達(dá)形式,只要求出數(shù)列中的項(xiàng)即可得到結(jié)果,較為基礎(chǔ).4、A【解析】
計(jì)算,得到答案.【詳解】根據(jù)題意,故,表示的復(fù)數(shù)在第一象限.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的計(jì)算,意在考查學(xué)生的計(jì)算能力和理解能力.5、C【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最大值.【詳解】若實(shí)數(shù)x,y滿足條件,目標(biāo)函數(shù)如圖:當(dāng)時(shí)函數(shù)取最大值為故答案選C【點(diǎn)睛】求線性目標(biāo)函數(shù)的最值:當(dāng)時(shí),直線過可行域且在軸上截距最大時(shí),值最大,在軸截距最小時(shí),z值最?。划?dāng)時(shí),直線過可行域且在軸上截距最大時(shí),值最小,在軸上截距最小時(shí),值最大.6、B【解析】
求函數(shù)導(dǎo)數(shù),利用切線斜率求出,根據(jù)切線過點(diǎn)求出即可.【詳解】因?yàn)?,所以,故,解得,又切線過點(diǎn),所以,解得,所以,故選:B【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義,切線方程,屬于中檔題.7、A【解析】
聯(lián)立直線方程與橢圓方程,解得和的坐標(biāo),然后利用向量垂直的坐標(biāo)表示可得,由離心率定義可得結(jié)果.【詳解】由,得,所以,.由題意知,所以,.因?yàn)?所以,所以.所以,所以,故選:A.【點(diǎn)睛】本題考查了直線與橢圓的交點(diǎn),考查了向量垂直的坐標(biāo)表示,考查了橢圓的離心率公式,屬于基礎(chǔ)題.8、C【解析】
首先判斷出是周期為的周期函數(shù),由此求得所求表達(dá)式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點(diǎn)睛】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎(chǔ)題.9、B【解析】
,有,,三種情形,用中的系數(shù)乘以中的系數(shù),然后相加可得.【詳解】當(dāng)時(shí),的展開式中的系數(shù)為.當(dāng),時(shí),系數(shù)為;當(dāng),時(shí),系數(shù)為;當(dāng),時(shí),系數(shù)為;故滿足的的系數(shù)之和為.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理,掌握二項(xiàng)式定理和多項(xiàng)式乘法是解題關(guān)鍵.10、D【解析】
由條件利用余弦函數(shù)的圖象的對(duì)稱性,得出結(jié)論.【詳解】對(duì)于函數(shù),令,解得,當(dāng)時(shí),函數(shù)的對(duì)稱軸為,,.故選:D.【點(diǎn)睛】本題主要考查余弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.11、A【解析】
作出其直觀圖,然后結(jié)合數(shù)據(jù)根據(jù)勾股定定理計(jì)算每一條棱長即可.【詳解】根據(jù)三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個(gè)四棱錐中最長棱的長度是.故選.【點(diǎn)睛】本題考查了四棱錐的三視圖的有關(guān)計(jì)算,正確還原直觀圖是解題關(guān)鍵,屬于基礎(chǔ)題.12、B【解析】
由M是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解.【詳解】解:∵M(jìn)是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點(diǎn)睛】判斷P點(diǎn)是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點(diǎn).②性質(zhì):或取得最小值③坐標(biāo)法:P點(diǎn)坐標(biāo)是三個(gè)頂點(diǎn)坐標(biāo)的平均數(shù).二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
作出約束條件表示的可行域,轉(zhuǎn)化目標(biāo)函數(shù)為,當(dāng)目標(biāo)函數(shù)經(jīng)過點(diǎn)時(shí),直線的截距最大,取得最大值,即得解.【詳解】作出約束條件表示的可行域是以為頂點(diǎn)的三角形及其內(nèi)部,轉(zhuǎn)化目標(biāo)函數(shù)為當(dāng)目標(biāo)函數(shù)經(jīng)過點(diǎn)時(shí),直線的截距最大此時(shí)取得最大值1.故答案為:1【點(diǎn)睛】本題考查了線性規(guī)劃問題,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.14、-1【解析】
作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過平移即可求z的最大值.【詳解】作出實(shí)數(shù)x,y滿足對(duì)應(yīng)的平面區(qū)域如圖陰影所示;由z=x+2y﹣1,得yx,平移直線yx,由圖象可知當(dāng)直線yx經(jīng)過點(diǎn)A時(shí),直線yx的縱截距最小,此時(shí)z最?。?,得A(﹣1,﹣1),此時(shí)z的最小值為z=﹣1﹣2﹣1=﹣1,故答案為﹣1.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,是基礎(chǔ)題15、【解析】
解:兩式作差,得,經(jīng)過檢驗(yàn)得出數(shù)列的通項(xiàng)公式,進(jìn)而求得的通項(xiàng)公式,裂項(xiàng)相消求和即可.【詳解】解:兩式作差,得化簡得,檢驗(yàn):當(dāng)n=1時(shí),,所以數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列;,,令故填:.【點(diǎn)睛】本題考查求數(shù)列的通項(xiàng)公式,裂項(xiàng)相消求數(shù)列的前n項(xiàng)和,解題過程中需要注意n的范圍以及對(duì)特殊項(xiàng)的討論,側(cè)重考查運(yùn)算能力.16、9【解析】
已知由余弦定理即可求得,由可求得,即可求得,利用正弦定理即可求得結(jié)果.【詳解】由余弦定理和,可得,得,由,,,由正弦定理,得.故答案為:.【點(diǎn)睛】本題考查正余弦定理在解三角形中的應(yīng)用,難度一般.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)根據(jù)線面垂直的性質(zhì)定理,可得DE//BF,然后根據(jù)勾股定理計(jì)算可得BF=DE,最后利用線面平行的判定定理,可得結(jié)果.(2)利用建系的方法,可得平面ABF的一個(gè)法向量為,平面CDF的法向量為,然后利用向量的夾角公式以及平方關(guān)系,可得結(jié)果.【詳解】(1)因?yàn)镈E⊥平面ABCD,所以DEAD,因?yàn)锳D=4,AE=5,DE=3,同理BF=3,又DE⊥平面ABCD,BF⊥平面ABCD,所以DE//BF,又BF=DE,所以平行四邊形BEDF,故DF//BE,因?yàn)锽E平面BCE,DF平面BCE所以DF//平面BCE;(2)建立如圖空間直角坐標(biāo)系,則D(0,0,0),A(4,0,0),C(0,4,0),F(xiàn)(4,3,﹣3),,設(shè)平面CDF的法向量為,由,令x=3,得,易知平面ABF的一個(gè)法向量為,所以,故.【點(diǎn)睛】本題考查線面平行的判定以及利用建系方法解決面面角問題,屬基礎(chǔ)題.18、(1)當(dāng)時(shí),在上遞增,在上遞減;當(dāng)時(shí),在上遞增,在上遞減,在上遞增;當(dāng)時(shí),在上遞增;當(dāng)時(shí),在上遞增,在上遞減,在上遞增;(2)證明見解析【解析】
(1)對(duì)求導(dǎo),分,,進(jìn)行討論,可得的單調(diào)性;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,,設(shè),可得,則,設(shè),對(duì)求導(dǎo),利用其單調(diào)性可證明.【詳解】解:的定義域?yàn)?,因?yàn)椋?,?dāng)時(shí),令,得,令,得;當(dāng)時(shí),則,令,得,或,令,得;當(dāng)時(shí),,當(dāng)時(shí),則,令,得;綜上所述,當(dāng)時(shí),在上遞增,在上遞減;當(dāng)時(shí),在上遞增,在上遞減,在上遞增;當(dāng)時(shí),在上遞增;當(dāng)時(shí),在上遞增,在上遞減,在上遞增;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,此時(shí),設(shè),又因?yàn)椋瑒t,設(shè),則對(duì)于任意成立,所以在上是增函數(shù),所以對(duì)于,有,即,有,因?yàn)?,所以,即,又在遞增,所以,即.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性及導(dǎo)數(shù)在極值點(diǎn)偏移中的應(yīng)用,考查學(xué)生分類討論與轉(zhuǎn)化的思想,綜合性大,屬于難題.19、(1)見解析(2)【解析】
(1)首先可得,再面面垂直的性質(zhì)可得平面,即可得到,再由,即可得到線面垂直;(2)過點(diǎn)做平面的垂線,以為原點(diǎn),分別以,,為,,軸建立空間直角坐標(biāo)系,利用空間向量法求出線面角;【詳解】解:(1)∵,點(diǎn)為的中點(diǎn),∴,又∵平面平面,平面平面,平面,∴平面,又平面,∴,又∵,分別為,的中點(diǎn),∴,∴,又平面,平面,,∴平面.(2)過點(diǎn)做平面的垂線,以為原點(diǎn),分別以,,為,,軸建立空間直角坐標(biāo)系,∵,∴,,,,∴,,,設(shè)平面的法向量為,由,得,令,得,∴,∴直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面垂直的判定,面面垂直的性質(zhì)定理的應(yīng)用,利用空間向量法求線面角,屬于中檔題.20、(1);(2)見解析.【解析】
事件表示男學(xué)員在第次考科目二通過,事件表示女學(xué)員在第次考科目二通過(其中)(1)這對(duì)夫妻是否通過科目二考試相互獨(dú)立,利用獨(dú)立事件乘法公式即可求得;(2)補(bǔ)考費(fèi)用之和為元可能取值為400,600,800,1000,1200,根據(jù)題意可求相應(yīng)的概率,進(jìn)而可求X的數(shù)學(xué)期望.【詳解】事件表示男學(xué)員在第次考科目二通過,事件表示女學(xué)員在第次考科目二通過(其中).(1)事件表示這對(duì)夫妻考科目二都不需要交補(bǔ)考費(fèi)..(2)的可能取值為400,600,800,1000,1200.,,,,.則的分布列為:40060080010001200故(元).【點(diǎn)睛】本題以實(shí)際問題為素材,考查離散型隨機(jī)變量的概率及期望,解題時(shí)要注意獨(dú)立事件概率公式的靈活運(yùn)用,屬于基礎(chǔ)題.21、(1)(2)【解析】試題分析:(1)因?yàn)锳B⊥AC,A1B⊥平面ABC,所以以A為坐標(biāo)原點(diǎn),分別以AC、AB所在直線分別為x軸和y軸,以過A,且平行于BA1的直線為z軸建立空間直角坐標(biāo)系,由AB=AC=A1B=2求出所要用到的點(diǎn)的坐標(biāo),求出棱AA1與BC上的兩個(gè)向量,由向量的夾角求棱AA1與BC所成的角的大小;
(2)設(shè)棱B1C1上的一點(diǎn)P,由向量共線得到P點(diǎn)的坐標(biāo),然后求出兩個(gè)平面PAB與平面ABA1的一個(gè)法向量,把二面角P-AB-A1的平面角的余弦值為,轉(zhuǎn)化為它們法向量所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年新能源行業(yè)創(chuàng)新報(bào)告及儲(chǔ)能技術(shù)應(yīng)用報(bào)告
- 保險(xiǎn)業(yè)監(jiān)管報(bào)表制度
- 護(hù)理高級(jí)職稱晉升科研能力提升
- 企業(yè)有關(guān)離職的制度
- 交易經(jīng)紀(jì)制度
- 兩參一改三結(jié)合制度
- 2026年溫州市甌海區(qū)司法局招聘編外人員的備考題庫帶答案詳解
- 吐魯番市托克遜縣公安局2025年面向社會(huì)公開招聘第二批警務(wù)輔助人員備考題庫及完整答案詳解一套
- 北京市水利規(guī)劃設(shè)計(jì)研究院2026年校園招聘備考題庫及參考答案詳解一套
- 2026中國三坐標(biāo)測量機(jī)行業(yè)前景動(dòng)態(tài)及投資潛力預(yù)測報(bào)告
- 2026國家國防科技工業(yè)局所屬事業(yè)單位第一批招聘62人筆試參考題庫及答案解析
- 老年患者心理護(hù)理實(shí)踐
- 2026海姆立克急救法更新要點(diǎn)解讀培訓(xùn)課件
- 2026年寒假作業(yè)實(shí)施方案(第二版修訂):騏驥馳騁勢(shì)不可擋【課件】
- 2026年春教科版(新教材)小學(xué)科學(xué)三年級(jí)下冊(cè)(全冊(cè))教學(xué)設(shè)計(jì)(附教材目錄P131)
- 《創(chuàng)新與創(chuàng)業(yè)基礎(chǔ)》課件-項(xiàng)目1 創(chuàng)新認(rèn)知與思維培養(yǎng)
- 廣東省汕頭市金平區(qū)2024-2025學(xué)年九年級(jí)上學(xué)期期末物理試題(含答案)
- 臨床用血技術(shù)規(guī)范2025年版與2000年版對(duì)照學(xué)習(xí)課件
- 2025職業(yè)技能培訓(xùn)學(xué)校自查報(bào)告范文(3篇)
- 2025-2026學(xué)年冀教版(2024)小學(xué)數(shù)學(xué)三年級(jí)上冊(cè)(全冊(cè))教學(xué)設(shè)計(jì)(附目錄P175)
- 無人機(jī)駕駛員培訓(xùn)基地項(xiàng)目可行性研究報(bào)告
評(píng)論
0/150
提交評(píng)論