2024屆黑龍江省鶴崗市一中數學高一下期末檢測試題含解析_第1頁
2024屆黑龍江省鶴崗市一中數學高一下期末檢測試題含解析_第2頁
2024屆黑龍江省鶴崗市一中數學高一下期末檢測試題含解析_第3頁
2024屆黑龍江省鶴崗市一中數學高一下期末檢測試題含解析_第4頁
2024屆黑龍江省鶴崗市一中數學高一下期末檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆黑龍江省鶴崗市一中數學高一下期末檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知實數滿足且,則下列選項中不一定成立的是()A. B. C. D.2.已知,,,,則()A. B.C. D.3.在中,角A,B,C的對邊分別為a,b,c,若,則角=()A. B. C. D.4.已知是等差數列的前項和,公差,,若成等比數列,則的最小值為()A. B.2 C. D.5.若直線與圓相切,則()A. B. C. D.6.對具有線性相關關系的變量,有觀測數據,已知它們之間的線性回歸方程是,若,則()A. B. C. D.7.已知,為直線,,為平面,下列命題正確的是()A.若,,則B.若,,則與為異面直線C.若,,,則D.若,,,則8.已知直線與,若,則()A.2 B.1 C.2或-1 D.-2或19.三棱錐V-ABC中,VA=VB=AC=BC=2,AB=23,VC=1,則二面角V-AB-CA.30° B.45° C.60° D.90°10.在中,A,B,C的對邊分別為a,b,c,,則的形狀一定是()A.直角三角形 B.等邊三角形 C.等腰三角形 D.等腰直角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.關于函數有下列命題:①由可得必是的整數倍;②的圖像關于點對稱,其中正確的序號是____________.12.若復數z滿足z?2i=z2+1(其中i13.已知正方體中,,分別為,的中點,那么異面直線與所成角的余弦值為______.14.下列關于函數與的命題中正確的結論是______.①它們互為反函數;②都是增函數;③都是周期函數;④都是奇函數.15.已知四棱錐的底面是邊長為的正方形,側棱長均為,若圓柱的一個底面的圓周經過四棱錐四條側棱的中點,另一個底面的圓心為四棱錐底面的中心,則該圓柱的側面積為________.16.數列{}的前項和為,若,則{}的前2019項和____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.記為數列的前項和,且滿足.(1)求數列的通項公式;(2)記,求滿足等式的正整數的值.18.為了研究某種藥物,用小白鼠進行試驗,發(fā)現藥物在血液內的濃度與時間的關系因使用方式的不同而不同.若使用注射方式給藥,則在注射后的3小時內,藥物在白鼠血液內的濃度與時間t滿足關系式:,若使用口服方式給藥,則藥物在白鼠血液內的濃度與時間t滿足關系式:現對小白鼠同時進行注射和口服該種藥物,且注射藥物和口服藥物的吸收與代謝互不干擾.(1)若a=1,求3小時內,該小白鼠何時血液中藥物的濃度最高,并求出最大值?(2)若使小白鼠在用藥后3小時內血液中的藥物濃度不低于4,求正數a的取值范圍.19.已知函數().(1)若不等式的解集為,求的取值范圍;(2)當時,解不等式;(3)若不等式的解集為,若,求的取值范圍.20.如圖,矩形中,平面,,為上的點,且平面,.(Ⅰ)求證:平面;(Ⅱ)求三棱錐的體積.21.某學校為了了解高三文科學生第一學期數學的復習效果.從高三第一學期期末考試成績中隨機抽取50名文科考生的數學成績,分成6組制成如圖所示的頻率分布直方圖.(1)試利用此頻率分布直方圖求的值及這50名同學數學成績的平均數的估計值;(2)該學校為制定下階段的復習計劃,從被抽取的成績在的同學中選出3位作為代表進行座談,若已知被抽取的成績在的同學中男女比例為,求至少有一名女生參加座談的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

由題設條件可以得到,從而可判斷A,B中的不等式都是正確的,再把題設變形后可得,從而C中的不等式也是成立的,當,D中的不等式不成立,而時,它又是成立的,故可得正確選項.【詳解】因為且,故,所以,故A正確;又,故,故B正確;而,故,故C正確;當時,,當時,有,故不一定成立,綜上,選D.【點睛】本題考查不等式的性質,屬于基礎題.2、C【解析】

分別求出的值再帶入即可.【詳解】因為,所以因為,所以所以【點睛】本題考查兩角差的余弦公式.屬于基礎題.3、A【解析】

由正弦定理可解得,利用大邊對大角可得范圍,從而解得A的值.【詳解】,由正弦定理可得:,,由大邊對大角可得:,解得:.故選A.【點睛】本題主要考查了正弦定理,大邊對大角,正弦函數的圖象和性質等知識的應用,解題時要注意分析角的范圍.4、A【解析】

由成等比數列可得數列的公差,再利用等差數列的前項和公式及通項公式可得為關于的式子,再利用對勾函數求最小值.【詳解】∵成等比數列,∴,解得:,∴,令,令,其中的整數,∵函數在遞減,在遞增,∴當時,;當時,,∴.故選:A.【點睛】本題考查等差數列與等比數列的基本量運算、函數的最值,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意為整數,如果利用基本不等式求解,等號是取不到的.5、C【解析】

利用圓心到直線的距離等于圓的半徑即可求解.【詳解】由題得圓的圓心坐標為(0,0),所以.故選C【點睛】本題主要考查直線和圓的位置關系,意在考查學生對該知識的理解掌握水平,屬于基礎題.6、A【解析】

先求出,再由線性回歸直線通過樣本中心點即可求出.【詳解】由題意,,因為線性回歸直線通過樣本中心點,將代入可得,所以.故選:A.【點睛】本題主要考查線性回歸直線通過樣本中心點這一知識點的應用,屬常規(guī)考題.7、D【解析】

利用空間中線線、線面、面面間的位置關系對選項逐一判斷即可.【詳解】由,為直線,,為平面,知:在A中,若,,則與相交、平行或異面,故A錯誤;在B中,若,,則與相交、平行或異面,故B錯誤;在C中,若,,,則與相交、平行或異面,故C錯誤;在D中,若,,,則由線面垂直、面面平行的性質定理得,故D正確.故選:D.【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,屬于基礎題.8、C【解析】

由兩直線平行的等價條件,即可得到本題答案.【詳解】因為,所以,解得或.故選:C【點睛】本題主要考查利用兩直線平行的等價條件求值.9、C【解析】

取AB中點O,連結VO,CO,由等腰三角形的性質可得,VO⊥AB,CO⊥AB,∠VOC是二面角V-AB-C的平面角,由此利用余弦定理能求出二面角的平面角V-AB-C的度數.【詳解】取AB中點O,連結VO,CO,∴三棱錐V-ABC中,VA=VB=AC=BC=2,AB=23所以VO⊥AB,CO⊥AB∴∠VOC是二面角V-AB-C的平面角,VO=VCO=B∴cos∴∠VOC=60∴二面角V-AB-C的平面角的度數為60°【點睛】本題主要考查三棱錐的性質、二面角的求法,屬于中檔題.求二面角的大小既能考查線線垂直關系,又能考查線面垂直關系,同時可以考查學生的計算能力,是高考命題的熱點,求二面角的方法通常有兩個思路:一是利用空間向量,建立坐標系,這種方法優(yōu)點是思路清晰、方法明確,但是計算量較大;二是傳統(tǒng)方法,求出二面角平面角的大小,這種解法的關鍵是找到平面角.10、A【解析】

利用平方化倍角公式和邊化角公式化簡得到,結合三角形內角和定理化簡得到,即可確定的形狀.【詳解】化簡得即即是直角三角形故選A【點睛】本題考查了平方化倍角公式和正弦定理的邊化角公式,在化簡時,將邊化為角,使邊角混雜變統(tǒng)一,還有三角形內角和定理的運用,這一點往往容易忽略.二、填空題:本大題共6小題,每小題5分,共30分。11、②【解析】

對①,可令求出的通式,再進行判斷;對②,將代入檢驗是否為0即可【詳解】對①,令得,可令,,①錯;對②,當時,,②對故正確序號為:②故答案為②【點睛】本題考查三角函數的基本性質,屬于基礎題12、1【解析】設z=a+bi,a,b∈R,則由z?2則-2b=a2+b2+12a=013、【解析】

異面直線所成角,一般平移到同一個平面求解.【詳解】連接DF,異面直線與所成角等于【點睛】異面直線所成角,一般平移到同一個平面求解.不能平移時通常考慮建系,利用向量解決問題.14、④【解析】

利用反函數,增減性,周期函數,奇偶性判斷即可【詳解】①,當時,的反函數是,故錯誤;②,當時,是增函數,故錯誤;③,不是周期函數,故錯誤;④,與都是奇函數,故正確故答案為④【點睛】本題考查正弦函數及其反函數的性質,熟記其基本性質是關鍵,是基礎題15、【解析】

先求出四棱錐的底面對角線的長度,結合勾股定理可求出四棱錐的高,然后由圓柱的一個底面的圓周經過四棱錐四條側棱的中點,可知四條側棱的中點連線為正方形,其對角線為圓柱底面的直徑,圓柱的高為四棱錐的高的一半,分別求解可求出圓柱的側面積.【詳解】由題可知,四棱錐是正四棱錐,四棱錐的四條側棱的中點連線為正方形,邊長為,該正方形對角線的長為1,則圓柱的底面半徑為,四棱錐的底面是邊長為的正方形,其對角線長為2,則四棱錐的高為,故圓柱的高為1,所以圓柱的側面積為.【點睛】本題主要考查了空間幾何體的結構特征,考查了學生的空間想象能力與計算求解能力,屬于中檔題.16、1009【解析】

根據周期性,對2019項進行分類計算,可得結果?!驹斀狻拷猓焊鶕}意,的值以為循環(huán)周期,=1009故答案為:1009.【點睛】本題考查了周期性在數列中的應用,屬于中檔題。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)首先利用數列的遞推關系式求出數列的通項公式;(2)先求出,再利用裂項相消法求出數列的和,解出即可.【詳解】(1)由為數列的前項和,且滿足.當時,,得.當時,,得,所以數列是以2為首項,以為公比的等比數列,則數列的通項公式為.(2)由,得由,解得.【點睛】本題考查了等比數列的通項公式的求法,裂項相消法求數列的和,屬于基礎題.18、(1)見解析;(2)0.【解析】

(1)藥物在白鼠血液內的濃度y與時間t的關系為:當a=1時,y=y(tǒng)1+y2;①當0<t<1時,y=﹣t4=﹣()2,所以ymax=f();②當1≤t≤3時,∵,所以ymax=7﹣2(當t時取到),因為,故ymax=f().(2)由題意y①??,又0<t<1,得出a≤1;②??由于1≤t≤3得到,令,則,所以,綜上得到以0.19、(1);(2).;(3).【解析】試題分析:(1)對二項式系數進行討論,可得求出解集即可;(2)分為,,分別解出3種情形對應的不等式即可;(3)將問題轉化為對任意的,不等式恒成立,利用分離參數的思想得恒成立,求出其最大值即可.試題解析:(1)①當即時,,不合題意;②當即時,,即,∴,∴(2)即即①當即時,解集為②當即時,∵,∴解集為③當即時,∵,所以,所以∴解集為(3)不等式的解集為,,即對任意的,不等式恒成立,即恒成立,因為恒成立,所以恒成立,設則,,所以,因為,當且僅當時取等號,所以,當且僅當時取等號,所以當時,,所以點睛:本題主要考查了含有參數的一元二次不等式的解法,考查了分類討論的思想以及轉化與化歸的能力,難度一般;對于含有參數的一元二次不等式常見的討論形式有如下幾種情形:1、對二次項系數進行討論;2、對應方程的根進行討論;3、對應根的大小進行討論等;考查恒成立問題,正確分離參數是關鍵,也是常用的一種手段.通過分離參數可轉化為或恒成立,即或即可,利用導數知識結合單調性求出或即得解.20、(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)先證明,再證明平面;(Ⅱ)由等積法可得即可求解.【詳解】(Ⅰ)因為是中點,又因為平面,所以,由已知,所以是中點,所以,因為平面,平面,所以平面.(Ⅱ)因為平面,,所以平面,則,又因為平面,所以,則平面,由可得平面,因為,此時,,所以.【點睛】本題主要考查線面平行的判定及利用等積法求三棱錐的體積問題,屬常規(guī)考題.21、(1);平均數的估計值(2)【解析】

(1)根據各小矩形面積和為1可求得的值;由頻率分布直方圖,結合平均數的求法即可求解.(2)根據頻率分布直方圖先求得成績在的同學人數,結合分層抽樣可得男生4人,女生2人,設男生

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論